

AFRL-IF-RS-TR-2007-19
Final Technical Report
January 2007

DARPA AGENT MARKUP LANGUAGE (DAML)
TOOLS FOR SUPPORTING INTELLIGENT
ANNOTATION, SHARING AND RETRIEVAL

University of Maryland, Baltimore

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K528

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,

either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-IF-RS-TR-2007-19 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

RANDALL J. MCINTYRE JAMES W. CUSACK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JAN 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

 Jun 00 - Apr 06
5a. CONTRACT NUMBER

5b. GRANT NUMBER
F30602-00-2-0591

4. TITLE AND SUBTITLE

DARPA AGENT MARKUP LANGUAGE (DAML) TOOLS FOR
SUPPORTING INTELLIGENT ANNOTATION, SHARING AND
RETRIEVAL

5c. PROGRAM ELEMENT NUMBER
62303E

5d. PROJECT NUMBER
DAML

5e. TASK NUMBER
00

6. AUTHOR(S)

Timothy Finin, James Mayfield and Benjamin Grosof

5f. WORK UNIT NUMBER
12

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland, Baltimore
1000 Hilltop Circle
Baltimore MD 21250

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFSA
3701 North Fairfax Dr. 525 Brooks Rd
Arlington VA 22203-1714 Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2007-19

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 07-025

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The UMBC lead DAML project began with the goal to design and prototype critical software components enabling developers to
create intelligent software agents capable of understanding and processing information and knowledge encoded in DAML and other
semantically rich markup languages. The project was led by Tim Finin (UMBC) who served as the PI, CO-PI Jim Mayfield (JHU)
and CO-PI Benjamin Grosof (MIT). The work had three main research thrusts: exploring and evaluating how semantic web
technology can be integrated into and used by agent based systems, developing techniques for building information retrieval systems
using semantic web data and knowledge and developing and evaluating better rule based systems for the semantic web. This final
report describes the most significant results and provides a complete list of papers that provide more information of the research
carried out and detailed results.

15. SUBJECT TERMS
DARPA Agent Markup Language (DAML), software agent, semantic web technology, agent based systems, information retrieval,
rule based systems

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Randall J. McIntyre

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

113
19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

i

Table of Contents

OVERVIEW ..1
THE ITTALKS SYSTEM...2

ITTALKS: A CASE STUDY IN THE SEMANTIC WEB AND DAML+OIL..3
THE SWOOGLE SEMANTIC WEB SEARCH ENGINE ..13

SEARCH ENGINES FOR SEMANTIC WEB KNOWLEDGE..13
CHARACTERIZING THE SEMANTIC WEB ON THE WEB..32

SWEETJESS AND SWEETRULES..48
SWEETJESS: INFERENCING IN SITUATED COURTEOUS RULEML VIA TRANSLATION TO AND FROM JESS RULES50
SWEETRULES AND SWEETDEAL ..67

THE TAGA AGENT FRAMEWORK ..82
USING SEMANTIC WEB TECHNOLOGY IN MULTI-AGENT SYSTEMS: A CASE STUDY IN THE TAGA TRADING AGENT
ENVIRONMENT...83
F-OWL: AN INFERENCE ENGINE FOR THE SEMANTIC WEB..90

PAPERS PRODUCED ..102
LIST OF ACRONYMS...109

Overview

The UMBC lead DAML project began with the goal to design and prototype critical software
components enabling developers to create intelligent software agents capable of understanding
and processing information and knowledge encoded in DAML and other semantically rich
markup languages. The project was led by Tim Finin (UMBC) who served as the PI, CO-PI Jim
Mayfield (JHU) and CO-PI Benjamin Grosof (MIT). The work had three main research thrusts:
exploring and evaluating how semantic web technology can be integrated into and used by agent
based systems, developing techniques for building information retrieval systems using semantic
web data and knowledge and developing and evaluating better rule based systems for the seman-
tic web. This final report describes the most significant results and provides a complete list of
papers that provide more information of the research carried out and detailed results.

Given the length of the project and the fact that it involved a team of three organizations working
sometimes independently and sometimes together, it is difficult to provide a single set of results.
Rather, we list one or two major results in each of the three major tasks. To provide detail, we
include a number of comprehensive papers as a part of this report. A complete list of papers de-
scribing the research and results that were supported by or partially supported by this project is
given at the end of this report. Most of these are available on the web and can be obtained by fol-
lowing the links provided. We also list some of the software packages and systems developed by
the project.

1

The ITTalks System

ITtalks is a Web portal that offers access to information about talks, seminars, and colloquia re-
lated to information technology. ITtalks users can view such information as location, speaker,
hosting organization, and talk topic. ITtalks also lets agents retrieve and manipulate information
stored in the ITtalks knowledge base. ITtalks used DAML+OIL for knowledge base representa-
tion, reasoning, and agent communication. We used DAML+OIL to mark up stored information
to provide additional reasoning capabilities. Additionally, ITtalks uses DAML+OIL for all com-
munication, including simple messages and queries, using the ITtalks-defined ontology.

The ITtalks framework was used to support a range of research including the development of
tools like SweetJess and DAMLator, prototype agent applications, interoperability experiments
and ontologies.

ITtalks: A Case Study in the Semantic Web and DAML+OIL

For details, we include a paper that appeared in the January issue of IEEE Intelligent Systems.

2

40 1094-7167/02/$17.00 © 2002 IEEE IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

ITtalks: A Case Study
in the Semantic Web
and DAML+OIL
R. Scott Cost, Tim Finin, Anupam Joshi, Yun Peng, Charles Nicholas, Ian Soboroff,
Harry Chen, Lalana Kagal, Filip Perich, Youyong Zou, and Sovrin Tolia,
University of Maryland, Baltimore County

Semantic Web developers seek to make the Web more machine-readable, to let

intelligent agents retrieve and manipulate pertinent information. Achieving this will

require seamless agent integration with the Web and taking full advantage of the exist-

ing infrastructure (such as message sending, security, authentication, directory services,

and application service frameworks). We believe that
the Semantic Web markup language DAML+OIL
(DARPA Agent Markup Language plus Ontology
Inference Layer) will be central to this goal’s real-
ization. The DAML Program aims to develop a
Semantic Web markup language that provides suffi-
cient rules for ontology development and that sup-
ports intelligent agents and other applications.1,2 (For
more information, see the “DAML+OIL” sidebar.)

As part of the University of Maryland, Baltimore
County’s role in the DAML Program, we constructed
a fielded application, ITtalks, which facilitates user and
agent interaction for locating talks on information tech-
nology. ITtalks also lets developers design and create
intelligent software agents that can understand and
process information encoded in DAML+OIL or other
semantically rich markup languages. Primarily, we
focused on developing the support and infrastructure
for integrating intelligent agents into the Web.

ITtalks features
ITtalks is a Web portal that offers access to infor-

mation about talks, seminars, and colloquia related
to information technology. ITtalks users can view
such information as location, speaker, hosting orga-
nization, and talk topic. ITtalks also lets agents
retrieve and manipulate information stored in the
ITtalks knowledge base.

ITtalks uses DAML+OIL for knowledge base rep-
resentation, reasoning, and agent communication
(see Figure 1). We used DAML+OIL to mark up
stored information to provide additional reasoning
capabilities. Additionally, ITtalks uses DAML+OIL

for all communication, including simple messages
and queries, using the ITtalks-defined ontology.

Personalized accounts
You can access ITtalks anonymously or through a

personalized account. You register by entering infor-
mation manually through Web forms or by providing
the location (URL) of a DAML+OIL personal pro-
file, which could include your location, interests,
contact details, and schedule. Your schedule could
be rudimentary (a list of available time periods for
given days) or significantly more detailed. ITtalks
uses this information to personalize the site, dis-
playing only talks that match your interests, sched-
ule, or both.

Because DAML+OIL is not yet in widespread use,
ITtalks provides a tool for creating a DAML+OIL
personal profile. The tool constructs a profile con-
taining only items that the ITtalks system uses. How-
ever, we believe that the profile will ultimately pro-
vide a unique and universal point for obtaining
personal user information for all information needs,
not just for ITtalks, and could then include any infor-
mation you wish to share.

Customized domains
To help create a universal resource for the interna-

tional IT research community, we organized ITtalks
around domains, which typically represent event-
hosting organizations such as universities, research
laboratories, or professional groups. A separate Web
site exists per domain, each independently maintained
by a moderator who can define the domain’s scope

Semantic Web markup

languages will improve

the automated gathering

and processing of

information and help

integrate multiagent

systems with the

existing information

infrastructure. In this

article, the authors

describe their ITtalks

system and discuss how

Semantic Web concepts

and DAML+OIL extend

its ability to provide an

intelligent online service.

3

 [Stone, 2000] Peter Stone and Amy Greenwald: The First
International Trading Agent Competition: Autonomous Bidding
Agents, Electronic Commerce Research Journal pp1-36, 2000.

 [Wellman, 2002] Michael P. Wellman, Amy Greenwald, Peter
Stone, and Peter R. Wurman: The 2001 Trading Agent Competition,
Fourteenth Innovative Applications of Artificial Intelligence
Conference (IAAI-2002), pp935-941, Edmonton, August 2002.

[Willmott, 2001] Willmott, S., Dale, J., Burg, B., Charlton, P. and
O'Brien, P., Agentcities: A Worldwide Open Agent Network. In:
AgentLink News, Issue 8, November 2001.

[Yang, 2000] Guizhen Yang and Michael Kifer. FLORA:
Implementing an efficient DOOD system using a tabling logic
engine. Proceedings of Computational Logic --- CL-2000, number
1861 in LNAI, pp 1078--1093. Springer, July 2000.

[Zou, 2003] Youyong Zou, Tim Finin, Li Ding, Harry Chen, and
Rong Pan, TAGA: Trading Agent Competition in Agentcities,
Workshop on Trading Agent Design and Analysis, held in
conjunction with the Eighteenth International Joint Conference on
Artificial Intelligence, Monday, 11 August, 2003, Acuulco MX.

8 4

keyter
Text Box

talks and the users’ interests throughout the
system. The DAML+OIL ontologies let users
add assertions in DAML+OIL to further char-
acterize their interests. The topic ontologies
support an automated talk classification, for
which we obtained an ACM CCS training col-
lection and are generating an Open Directory
training collection to develop the necessary
components. We are also developing a semi-
automated component that can map topics in
one ontology to topics in another, by using
user-specific mapping believes and by exploit-

ing the fact that each ontology’s nodes have an
associated text collection.

Data entry support
Although we have simplified data entry—

by supporting automatic form completion
using information from the knowledge base
and the user’s DAML+OIL profile—it still
needs improvement. Therefore, we, along
with the Lockheed Martin research group, are
developing a focused Web spider to collect
talk announcements from open sources on the

Web. This spider will identify and automati-
cally add key information to the ITtalks
knowledge base using Lockheed Martin’s
AeroText information extraction system.

Architecture
ITtalks uses a relational database com-

bined with a Web server to provide user
access to the system. ITtalks also has an
interface for agent-based communication.

Database
The ITtalks system uses the MySQL rela-

tional database software. We store the con-
tents of the ITtalks knowledge base in a data-
base whose schema is closely mapped to our
ontologies, describing events, people, topics,
and locations. We chose MySQL because of
its known reliability and because we needed
software with a license that lets us offer the
ITtalks package to academic and commer-
cial institutions. We are considering replac-
ing MySQL with a native XML database
software such as dbXML.

Web server
We used a combination of Apache and Tom-

cat as the Web portal servers. This lets us pre-
sent IT talk descriptions to the user through
Java servlets and JavaServer Pages files, which
dynamically generate requested information
in DAML+OIL, XML, HTML, RSS, and
WML. ITtalks can also deliver information
viewable on either a standard, computer-based
phone or a WAP-enabled cellular phone.

A typical scenario
To better portray user interaction with

ITtalks, let’s look at a simple, typical inter-
action. In this scenario, Jim learns from his
colleagues about the ITtalks Web portal as a
source of IT-related events in his area; Jim is
affiliated with Stanford University.

Jim directs his browser to the www.ittalks.
org main page. Seeing a link to http://umbc.
ittalks.org, he selects it and is presented with
a new page listing upcoming talks scheduled
at UMBC, Johns Hopkins University, and
other locations within a 15-mile radius (the
default distance for the UMBC domain).

Jim browses the Web site, viewing announ-
cements matching his interests and preferred
locations (as provided in his explicit search
queries). He requests to view the talk infor-
mation in WML. Finding a talk of potential
interest to a colleague, Jim takes advantage of
the invitation feature, which lets him send an
invitational email to any of his friends for any

42 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

<rdf:RDF>
<rdf:Description about=”&itlink;742”>
<Talk rdf:parseType="Resource"
<Title>Invisible Web</Title>
<Abstract>

Accessing information anytime, anywhere has...
</Abstract>
<BeginTime>
<time:Year>2002</time:Year>
<time:Month>01</time:Month>
<time:Day>17</time:Day>
<time:Hour>12</time:Hour>
<time:Minute>00</time:Minute>
<time:Second>00</time:Second>

</BeginTime>
<EndTime>
<time:Year>2002</time:Year>
<time:Month>01</time:Month>
<time:Day>17</time:Day>

<time:Hour>13</time:Hour>
<time:Minute>00</time:Minute>
<time:Second>00</time:Second>

</EndTime>
<Location rdf:parseType="Resource">
<Institution>UMBC</Institution>
<Building>Math-Physics</Building>
<Room>401</Room>
<Street1>1000 Hilltop Circle</Street1>
<City>Baltimore</City>
<State>MD</State>
<Zip>21250</Zip>
<Country>USA</Country>

</Location>
…

<Talk>
</rdf:Description>

</rdf:RDF>

Figure 2. An example of DAML+OIL-encoded knowledge.

Database

DAML
reasoning

Relational
database

MS

DAML
speaking
agents

HTTP,
Webscraping

Web services
Web server +
Java servlet

HTTP

SQL

ITtalks
database

People

Email, HTML, SMS, WAP

HTML, KQML,
DAML, Prolog

?

DAML files

HTML, KQML, DAML

Figure 1. The architecture for ITtalks is built around a Web server backed by a relational
database. ITtalks has interfaces for human users, software agents, and Web services.

5

of the listed talks. Finally, using the Personal-
ize link on the bottom of the page, Jim creates
his own http://ittalks.org main page, by pro-
viding the URL of his DAML+OIL-encoded
profile. This customized page, listing talks
based on his preferences, will be Jim’s entrance
to the ITtalks site whenever he returns.

Agents
We’d like ITtalks to demonstrate, among

other things, how DAML+OIL facilitates
integration of service agents with online
information resources. To this end, and to
extend ITtalks’ capabilities, we defined sev-
eral agents that support ITtalks’ operation.
You can view some as supporting services
(such as external information services); we
assume that others will exist in the general
environment in the future.

ITtalks
The ITtalks agent is a front end for the

ITtalks system. The agent interacts with

ITtalks through the Web-based interface used
by humans but communicates via an ACL
(Agent Communication Language) with
other agents on the Web. The agent acts pri-
marily as a gateway for agent access and does
not support any advanced functionality.

User
Agent research has long aimed to repre-

sent human users online through agents that
can service queries and filter information for
them. Although ITtalks does not require such
agents to exist, we recognize the power that
such agents add. Therefore, ITtalks supports
interaction with user agents as well as their
human counterparts. The user agent that we
developed understands DAML+OIL, sup-
ports sophisticated reasoning, and commu-
nicates via a standard ACL. It reasons by
means of XSB, a logic programming and
deductive database system for Unix and Win-
dows developed at the State University of
New York, Stony Brook.

Calendar
Although a user agent might contain the

necessary knowledge about its user’s sched-
ule, we believe that it will benefit from
assigning the calendar-based facts and pref-
erences to a separate calendar agent. This lets
the user agent use the same protocol to con-
sult the user calendar and other groups’ or
users’ calendar agents. The calendar agent
can only represent abstraction to an already
existing infrastructure such as Microsoft Out-
look or other desktop–server applications.
The calendar agent can also represent a room
and thus permit reuse of the same principles
of participation and event scheduling.

Classifier
ITtalks uses a classifier, or recommender,

agent that is invoked when a user enters a new
talk. On the basis of the talk’s abstract, the clas-
sifier returns ACM CCS numbers along with a
rank, in descending order. Using a local table
of classification numbers and names, ITtalks
will suggest to the user 10 possible topics.

MapQuest
The MapQuest agent is a wrapper agent

that lets ITtalks use external services. It inter-
acts directly with agents (for example, the
ITtalks and user agents) and accepts requests
for information such as the distance between
two known locations. It then phrases an
appropriate request to the MapQuest system,
parses the results, and generates a response.
We could also generically name this agent a
distance agent and use any external service
(or combination of several, as needed).

JANUARY/FEBRUARY 2002 computer.org/intelligent 43

Personal
profile

ontology

Calendar
ontology

Talk ontology

ACM ontology

Open Directory
ontology

Topic ontology Conversation
ontology

Figure 3. The relationships among the various ontologies that ITtalks uses.

daml:range

daml:domain

Related-to
Software

Integrated
circuits

Keywords

ACM Topic

Hardware

Memory
structures

Topic
daml:
Literal

Subtopic Supertopic

Subtopic

Supertopic

Subtopic

Supertopic
Subtopic

Supertopic

Subtopic

Supertopic

daml:range daml:domain

daml:range

daml:domain daml:range

daml:domain

daml:class ...

...

Figure 4. The ontologies that ITtalks uses are relatively simple, such as the topics ontology it uses to describe talk topics and user
interests.

6

Scenario: Advanced features
We continue our scenario with user Jim to

demonstrate more advanced interactions that
ITtalks offers. Jim has registered with ITtalks
and left instructions for the system to notify
him when certain types of talks are scheduled.

ITtalks discovers an upcoming talk that
might interest Jim. Based on his preferences,
ITtalks opts to notify Jim’s user agent
directly via an ITtalks agent, which forwards
the message using an ACL. Jim’s user agent
then consults Jim’s calendar agent to deter-
mine his availability and the MapQuest agent
for the distance from Jim’s predicted loca-
tion at the time of the talk (see Figure 5).

Some more sophisticated interactions,
which we plan to implement, could poten-
tially take place at this time. For example, the
calendar and user agents might decide to alter
Jim’s schedule and contact a colleague’s user
agent. Or, the user agent could request more
information about the speaker and event by
contacting other agents or Web sites, such as
a CiteSeer-based agent.7 Finally, after mak-
ing a decision, the user agent could notify the
ITtalks agent, indicating that Jim will or will
not attend. The ITtalks agent would then
make the appropriate adjustments to the
ITtalks database.

Future implementations might also allow
for even more complex interactions. Say that
a research group employs Jim but has limited
funding. The group lets only one researcher
at a time attend a particular IT event. Conse-
quently, the user agent cannot decide on Jim’s
participation until it interacts with other agents
representing Jim’s employer and colleagues.
In this case, a decision and election of a group
representative requires an interaction involv-
ing an agent virtual community.

The user agent could also benefit from par-
ticipating in virtual communities thanks to
recommendations it obtains from other user
agents. One user agent might recommend an
IT event given its owner’s experiences from
attending a past talk of the same speaker.
Another user agent might decide to share
comparisons of two competing times and
locations for an identical IT event. Yet
another user agent might simply share its
owner’s intension to attend a particular IT
event. Thus, each virtual community mem-
ber could profit from these and other recom-
mendations and reflect these social filtering
methods in its own decisions.

Finally, future implementations might fac-
tor in smart offices.8,9 For example, the
ITtalks agent could directly contact an agent
representing an IT event location. This room
agent could use varying service discovery
techniques10,11 to locate a projector in the
room and instruct it to download a Power-
Point presentation before the speaker’s
arrival. Moreover, the room agent might also
try to contact additional agents in the IT
event’s vicinity to decrease the possible noise
level from other rooms and to verify that a
hallway agent has requested enough refresh-
ments during the event.

Benefits of DAML+OIL
ITtalks benefits significantly from its use of

a semantic markup language. DAML+OIL
specifies the ontologies that we use exten-
sively in our system for personal profiles and
as a content language for agent communica-
tion. Without DAML+OIL, specifying topic
schedules, interests, and assertions would be
very difficult. As an ACL, DAML+OIL offers
more flexible semantics than KIF (Knowl-

edge Interchange Format) or other content
languages that only provide syntax. The
greatest benefit DAML+OIL gives ITtalks is
the ability to interact with any DAML+OIL-
capable agent without human supervision.
Consequently, all these benefits enable more
efficient interaction between the system and
its users—humans or software agents. (See
the “Related Work” sidebar.)

Interoperability standard
Using DAML+OIL lets us easily share

ITtalks content with other DAML+OIL-aware
applications and agents. In the future, we
could also offer a simple extension to let arbi-
trary agents register and interact with ITtalks
for various purposes. For example, a Centau-
rus room manager agent8 could watch ITtalks
for events happening in a particular room to
enable better scheduling. DAML+OIL also
acts as an interoperability standard, by letting
other sites publish announcements marked up
in our ontology, making their talks available
for inclusion in ITtalks.

Agent communication language
In the future Semantic Web, agents will cre-

ate, access, modify, enrich, and manage
DAML+OIL documents as a way to dissemi-
nate and share knowledge. Because DAML+
OIL documents will be the objects of dis-
course, DAML+OIL and ACLs must be suc-
cessfully integrated. Agents will need to
exchange DAML+OIL documents and ex-
change informational attitudes about
DAML+OIL documents. Using an ACL,
agents can talk about DAML+OIL documents.
Thus, we hope to integrate ACL work and con-
cepts with a universe of DAML+OIL content.

Distributed trust and belief
Agents have difficulty knowing what infor-

mation sources (for example, documents,Web
pages, and agents) to believe or trust in an
open, distributed, and dynamic world and how
to integrate potentially contradictory informa-
tion. We can use DAML+OIL to support dis-
tributed trust and reputation management,12,13

by forming the basis of a logic for distributed
belief transfer that will enable more sophisti-
cated, semantically driven rule-based tech-
niques for information integration and fusion.
Distributed trust involves authentification and
access control based on the conformance of a
user’s credentials to a predefined security pol-
icy. We are considering distributed belief as a
way for agents to garner required information.
For example, an agent would believe that the

44 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

ITtalks ITtalks
agent

User
agent

MapQuest
agent

Calendar
agent

Talk event
Talk event of interest?

Distance from my user?

Is my user free?

25 miles

That time slot is clear

My user will attendEvent accepted

Is my user free added the travel time?

That time slot is still clear

Figure 5. Agent interactions in the ITtalks agent scenario.

7

http://w3c.org/xml page would always have
current information about XML.

We use DAML+OIL’s expressiveness by
employing it to describe the security policies,
credentials, and trust relationships that form
the basis of trust management. Policies speci-
fied in this way contain semantic meaning,
which facilitates their integration and improved
conflict resolution. Also, other applications
will be able to interpret the agent’s credentials
(such as authorization certificates) correctly,
universalizing these credentials. Similarly,
describing beliefs and associating levels of
trust with them is straightforward, and deduc-
ing belief is uniform for different applications
and services.

Data entry support
ITtalks supports intelligent form filling,

making it easier for users to enter and edit
information in their profiles and talk announce-
ments. Additionally, it provides automatic form
filling when an editor tries to enter informa-
tion about an entity that already exists in the
knowledge base.

Entering talks
To make ITtalks successful, we must sim-

plify the entry of new talk descriptions into the
system. We address this problem using three
complementary approaches: an enhanced Web
interface, acceptance of marked-up announce-
ments, and automated text extraction. DAML+
OIL plays a key role in the first two and is the
target representation for the third.

Enhancing the Web interface
Although our implementation of auto-

matic form filling for entities already entered
in the knowledge base does not directly use
DAML+OIL, it can support a more general-
ized version of a form-filling assistant. This
depends on

• Tagging Web form widgets with DAML+
OIL descriptions of what they represent

• Capturing dependencies among data items
in DAML+OIL

• Compiling these dependencies into an
appropriate execution form (for example,
JavaScript procedures) that can drive the
Web form interface

Additionally, we plan to investigate mul-
timodal support, where users can enter new
information through keyboard or vocal input.
When filling in a form, the user would speak
to enter data in each field. On receipt of the
voice-filled form, ITtalks would try to infer
the recorded sound’s meaning, obtain addi-
tional information based on the knowledge
and rules stored in the ITtalks system, and
present the user with a completed form for
verification. This enhancement would let
ITtalks provide voice-entry support for
devices with limited keyboard functionality,
such as PDAs or cellular phones.

Text classification
For ITtalks to filter talk announcements

on topic matches, we must know the appro-
priate topics for each talk. Initially, we
required users to manually select appropri-
ate topic categories from the ACM CCS hier-
archy. However, the user faces a daunting
task of navigating a hierarchy of nearly 300

topics, many with unfamiliar meanings. Try-
ing to select their own topics to characterize
their interests can be equally daunting. Ulti-
mately, we would like to use more than one
topic hierarchy to classify both talk topics
and user interests (for example, ACM CCS
and Open Directory nodes), which further
complicates the problem.

To address this, we built an automatic text
classifier to suggest appropriate terms in a
hierarchy for classifying a talk based on its
title and abstract. We used the classifier pack-
age from the Bag Of Words toolkit by Andrew
McCallum at Carnegie Mellon University.
This library provides support for a wide vari-
ety of text classification and retrieval algo-
rithms. We used the Naive Bayes algorithm,
which is widely used in the classification lit-
erature and fairly effective, and was quick to
learn the 285 classes in our test collection. We
plan to use the same classification agent to
suggest interest terms for users based on text
found by searching their Web pages.

Additionally, we are also developing a tool
for mapping multiple ontologies. Such a tool
will, for example, let each user select a pre-
ferred topic ontology on the fly, and the ITtalks
system will immediately adapt and present the
personalized filtering results. As a prototype
of the mapping tool, we chose a semiautomatic
approach that lets users manually select rela-
tions (landmarks) amonγ specific topics across
the ontologies—for example, broader, nar-
rower, and similar. Subsequently, the tool auto-
matically computes the remaining mappings
via the user-specified relations and our auto-
matic text classifier, using training sets of doc-
uments for the ontologies.

JANUARY/FEBRUARY 2002 computer.org/intelligent 45

ITtalks must address two general problems: generating the
Semantic Web markup for talk announcements and integrat-
ing and fusing information from different systems.

ITtalks uses text classification to automatically generate topic
descriptors for markup, using the Carnegie Mellon University
Rainbow program (www-2.cs.cmu.edu/~mccallum/bow). Kamal
Nigam and his colleagues have also written a good reference
for text classification.1

The Lockheed Martin AeroDAML project (http://ubot.
lockheedmartin.com/ubot) offers a more powerful approach
to automatically generating markup for natural language
documents. The project tackles the markup generation
problem by combining its proprietary natural language
processor, AeroText, with the DAML+OIL language for
knowledge representation. Consequently, software agents
can use AeroDAML to automatically annotate existing Web
pages to overcome the syntactic complexity and semantic
ambiguity of otherwise inaccessible information.

ITtalks uses a multiagent systems approach (http://agents.
umbc.edu) to integrate information from different sources.

Specifically, it wraps each information source or destination
with code to enable it to act as an agent. The resulting system
of agents communicates with each other using the Foundation
for Intelligent Physical Agents (http://fipa.org) agent commu-
nication language and associated standards.

The WebScripter (www.isi.edu/Webscripter) system, developed
at the Univ. of Southern California Information Sciences Institute,
offers another approach to information fusion on the Seman-
tic Web. WebScripter collects DAML-encoded information
from multiple, heterogeneous Web sources and combines
them by extracting and fusing the encoded information into
reports. WebScripter comprises two software components: the
report-authoring environment for defining reports, and the
report instantiation component that generates new reports
from DAML instances and makes them available on the Web.

Reference
1. K. Nigam et al., “Text Classification from Labeled and Unlabeled

Documents Using EM,” Machine Learning, vol. 39, nos. 2–3, 2000,
pp. 103–134.

Related Work

8

The automated mapper then performs two
operations. First, it accepts marked-up an-
nouncements. An easy way to enter new talk
announcements is to supply an already
marked-up document. The ITtalks interface
lets you enter a URL for a talk announcement
marked up in ontologies that ITtalks under-
stands. Currently, these only include the native
ontologies we built for this application. If talk
announcements were available with semantic
markup using other ontologies, we might be
able to provide rules and transformation that
could map or partially map the information
into the ITtalks ontologies. We expect to
encounter such marked-up announcements as
the Semantic Web develops.

In the next step, the automated mapper
automatically extracts the information. We
would like to process talk announcements in
plain text or HTML and automatically iden-
tify and extract the key information. This
would let us fill the ITtalks database with
information obtained from email or Web
announcements. Others have studied the
problem of recognizing and extracting infor-
mation from talk announcements, mostly for
use in a machine learning application.14,15

User profiles
We use personal profiles to help ITtalks

meet individual user requirements. You can
easily share this profile, and the use of
DAML+OIL will allow more expressive
content for schedules, preferences, and inter-
ests. The notion of a personal profile and a
user agent are closely linked; a user might
have one or the other, or both. The profile
would likely express much of the informa-
tion encoded in a user agent’s knowledge
base. Conversely, an agent would likely be
able to answer queries about information in
a profile.

Future directions
Because most users don’t have personal

agents, we have been developing one that you
can use with this system. However, we’d like
ITtalks to be able to interact with external
agents of any type. The agent we are devel-
oping reasons about the user’s interests,
schedules, and assertions and uses the
MapQuest agent to determine if a user can
attend a particular talk.

We are developing a framework to use
DAML+OIL in distributed trust and belief.
DAML+OIL expressions on a Web page that
encodes an agent’s statement or other speech
act are signed to provide authentication and

integrity. We are working on an ontology for
the description of permissions, obligations, and
policies in DAML+OIL, which will support
their use, exchange, and delegation by agents.

To make the data entry process more effi-
cient, we are developing a focused Web spi-
der, which will collect talk announcements
from the source and identify key information
using a text extraction system. The spider
will add all found and relevant information
to the ITtalks knowledge base.

In the future, all services that require per-
sonal user information should access the
same user profile, eliminating the need to
repeatedly enter the same information for a
multitude of services. We believe that the
new standard for XML Signature and
Encryption under development might pro-
vide a mechanism by which users could con-
trol access to different parts of their profile.

Our system demonstrates the value of
markup languages to the Semantic

Web through its ability to improve Web agent
functionality and to represent ontologies and
ACLs. Each ITtalks Web page contains the
necessary information for an agent to retrieve
the page’s DAML+OIL-encoded description
and a responsible agent’s contact information
to provide more effective conversation. ITtalks
thus gives each agent the ability to retrieve and
manipulate all ITtalks-related information
through a Web site interface or a direct agent-
to-agent conversation. Hence, by combining
the features of existing Web applications with
the DAML+OIL-based knowledge and rea-
soning capabilities, we believe ITtalks pre-
sents a true Semantic Web application.

Acknowledgments
The Defense Advanced Research Projects

Agency under contract F30602-00-2-0 591 AO
K528 as part of the DAML program (www.
daml.org) partly supported this research.

References

1. J. Hendler, “Agents and the Semantic Web,”
IEEE Intelligent Systems, vol. 16, no. 2, Mar./
Apr. 2001, pp. 30–37.

2. S.A. McIlraith, T.C. Son, and H. Zeng, “Seman-
tic Web Services,” IEEE Intelligent Systems,
vol. 16, no. 2, Mar./Apr. 2001, pp. 46–53.

3. R.S. Cost et al., “Jackal: A Java-Based Tool
for Agent Development,” Proc. Workshop
Tools for Developing Agents (AAAI 98),
AAAI Press, Menlo Park, Calif., 1998, pp.
73–82.

4. T. Finin,Y. Labrou, and J. Mayfield, “KQML
as an Agent Communication,” Software
Agents, MIT Press, Cambridge, Mass., 1997,
pp. 291–316.

5. FIPA 97 Specification Part 2: Agent Commu-
nication Language, tech. report, Foundation
for Intelligent Physical Agents, 1997; www.
fipa.org (curent Jan. 2002).

6. F. Bellifemine, A. Poggi, and G. Rimassa,
“Developing Multi Agent Systems with a
FIPA-Compliant Agent Framework,” Soft-
ware: Practice and Experience, vol. 31, no.
2, Feb. 2001, pp. 103–128.

7. K.D. Bollacker, S. Lawrence, and C.L. Giles,
“Citeseer: An Autonomous Web Agent for
Automatic Retrieval and Identification of
Interesting Publications,” Proc. 2nd Int’l
Conf. Autonomous Agents (Agents 98), ACM
Press, New York, 1998, pp. 116–123.

8. L. Kagal et al., “A Framework for Intelligent
Services in a Mobile Environment,” Proc.
Int’l Workshop Smart Appliances and Wear-
able Computing (IWSAWC), 2001, pp.
195–201.

9. A. Cedilnik et al., A Secure Infrastructure for
Service Discovery and Access in Pervasive
Computing, tech. report TR-CS-01-12, Com-
puter Science and Electrical Eng. Dept., Univ.
of Maryland Baltimore County, Baltimore,
Md., 2001.

10. D. Chakraborty et al., “Dreggie: Semantic
Service Discovery for m-Commerce Appli-
cations,” Proc. Workshop Reliable and Secure
Applications in Mobile Environment, 2001,
pp. 28–31.

11. O. Ratsimor et al., “Agents2go:An Infrastruc-
ture for Location-Dependent Service Discov-
ery in the Mobile Electronic Commerce Envi-
ronment,” Proc. ACM Mobile Commerce
Workshop, ACM Press, New York, 2001.

12. L. Kagal et al., “An Infrastructure for Distrib-
uted Trust Management,” Proc. Autonomous
Agents Workshop Norms and Institutions in
Multiagent Systems (Agents 01), 2001.

13. N. Li and B. Grosof, “A Practically Imple-
mentable and Tractable Delegation Logic,”
IEEE Symp. Security and Privacy, IEEE
Computer Soc. Press, Los Alamitos, Calif.,
2000, pp. 27–42.

14. T. Eliassi-Rad and J. Shavlik, Instructable and
Adaptive Web-Agents That Learn to Retrieve
and Extract Information, tech. report 2000-1,
Machine Learning Research Group, Dept. of
Computer Sciences, Univ. of Wisconsin,
Madison, 2000.

15. F. Ciravegna, “Learning to Tag for Informa-
tion Extraction from Text,” Proc. 14th Euro-
pean Conf. Artificial Intelligence Workshop
on Machine Learning for Information Extrac-
tion, 2000.

46 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

9

JANUARY/FEBRUARY 2002 computer.org/intelligent 47

T h e A u t h o r s
R. Scott Cost is a re-
search assistant professor
of computer science and
electrical engineering at
the UMBC. His research
interests include software
agents and agent com-
munication, information
retrieval, electronic com-

merce, and the Semantic Web. He received an AB
from Colgate University, an MSE from Johns Hop-
kins University, and a PhD from UMBC—all in
computer science. He is a member of the ACM,
IEEE, and AAAI. Contact him at the Laboratory
for Advanced Information Technology, Univ. of
Maryland, Baltimore County, 1000 Hilltop Circle,
Baltimore, MD 21250; cost@csee.umbc.edu.

Tim Finin is a professor
in the Department of
Computer Science and
Electrical Engineering
and director of the Insti-
tute for Global Electronic
Commerce at UMBC.
His research interests in-
clude the applications of

AI to problems in information systems, intelligent
interfaces, and language processing. He received
an SB in electrical engineering from MIT and a
PhD in computer science from the University of
Illinois. He is a former AAAI councilor and cur-
rently serves as the AAAI’s representative on the
Computing Research Association’s board of direc-
tors. Contact him at the Laboratory for Advanced
Information Technology, Univ. of Maryland, Bal-
timore County, 1000 Hilltop Circle, Baltimore,
MD 21250; finin@csee.umbc.edu.

Anupam Joshi is an
associate professor of
computer science and
electrical engineering at
UMBC. His research
interests include net-
worked computing, intel-
ligent systems, data min-
ing, the Semantic Web,

content-based retrieval of video data from net-
worked repositories, and networked high-perfor-
mance computing and communications. He has a
BTech in electrical engineering from the Indian
Institute of Technology, Delhi, and an MS and a
PhD in computer science from Purdue University.
He is an associate editor of IEEE Transactions on
Fuzzy Systems. He is a member of the IEEE, IEEE
Computer Society, and ACM. Contact him at the
Laboratory for Advanced Information Technology,
Univ. of Maryland, Baltimore County, 1000 Hill-
top Circle, Baltimore, MD 21250; joshi@csee.
umbc.edu.

Yun Peng is assistant
director of the graduate
program for the Depart-
ment of Computer Sci-
ence and Electrical En-
gineering at UMBC.
His research interests
include a variety of sub-
jects in artificial intelli-

gence, neural networks, and artificial life. He
has a BS in electrical engineering from the
Harbin Engineering Institute, China, an MS in
computer science from Wayne State University,
and a PhD in computer science from the Uni-
versity of Maryland, College Park. He is an asso-
ciate editor of Pattern Recognition and Com-
puters in Biology and Medicine. He is a member
of the AAAI and the international Neural Net-
work society. Contact him at the Laboratory for
Advanced Information Technology, Univ. of
Maryland, Baltimore County, 1000 Hilltop Cir-
cle, Baltimore, MD 21250; ypeng@csee.
umbc.edu.

Charles Nicholas is a
professor of computer
science at UMBC. He is
the director of the
UMBC’s Center for
Architectures for Data-
Driven Information Pro-
cessing, sponsored by
the US Department of

Defense. His research interests include document
engineering, information retrieval, and pro-
gramming languages. He received a BS from the
University of Michigan, Flint, and an MS and a
PhD from Ohio State University—all in com-
puter science. He is general chair of the 2002
ACM International Conference on Information
and Knowledge Management (CIKM 02). He is
a member of the ACM and IEEE. Contact him at
the Laboratory for Advanced Information Tech-
nology, University of Maryland, Baltimore
County, 1000 Hilltop Circle, Baltimore, MD
21250; nicholas@csee.umbc.edu.

Ian Soboroff is a re-
searcher with the Re-
trieval Group at the
National Institute of
Standards and Technol-
ogy. His research inter-
ests include information
filtering, distributed re-
trieval systems, and

methods for scaling current information re-
trieval, laboratory-style evaluations to Tbyte-
sized document collections and beyond. He
received his BS, MS, and PhD in computer sci-
ence from UMBC. He is a member of the ACM
and USENIX. Contact him at NIST, 100 Bureau
Dr., Stop 8940, Gaithersburg, MD, 20899-8940;
ian.soboroff@nist.gov.

Harry Chen is a PhD
student and a graduate
research assistant in the
Department of Com-
puter Science and Elec-
trical Engineering at
UMBC. His research
interests include mobile
computing and artificial

intelligence. He received a 2001 PhD Research
Fellowship from HP Labs. He received his BS
and MS in computer science from UMBC. He
is a student member of the ACM, IEEE, and
AAAI. Contact him at the Laboratory for

Advanced Information Technology, University
of Maryland, Baltimore County, 1000 Hilltop
Circle, Baltimore, MD 21250; hchen4@csee.
umbc.edu.

Lalana Kagal is a PhD
student and graduate
research assistant in the
Department of Computer
Science and Electrical
Engineering at UMBC.
Her research interests
include artificial intelli-
gence, security, and mo-

bile computing. She has a BS and an MS in com-
puter science from Pune University, India.
Contact her at the Laboratory for Advanced Infor-
mation Technology, University of Maryland, Bal-
timore County, 1000 Hilltop Circle, Baltimore,
MD 21250; lkagal1@csee.umbc.edu.

Filip Perich is a PhD
student and graduate
research assistant in the
Department of Com-
puter Science and Elec-
trical Engineering at
UMBC. His research
interests include artifi-
cial intelligence, mobile

computing, and mobile data management. He
has a BA in mathematics from Washington Col-
lege, Maryland. He is a member of the ACM.
Contact him at the Laboratory for Advanced
Information Technology, Univ. of Maryland,
Baltimore County, 1000 Hilltop Circle, Balti-
more, MD 21250; fperic1@csee.umbc.edu.

Youyong Zou is a PhD
student at UMBC. His
research interests in-
clude Semantic Web lan-
guage (DAML) reason-
ing, using Semantic Web
languages in the Foun-
dation for Intelligent
Physical Agents, and

ontology mapping. He has a BS and an MS in
computer science from NanKai University,
China. Contact him at the Laboratory for
Advanced Information Technology, University
of Maryland, Baltimore County, 1000 Hilltop
Circle, Baltimore, MD 21250; yzou1@csee.
umbc.edu.

Sovrin Tolia is a gradu-
ate student at UMBC,
pursuing his MS in com-
puter science. His re-
search interests include
mobile data manage-
ment, sensor networks,
agents, and the Semantic
Web. He has a BS in

information systems from the Birla Institute of
Technology and Science, India. Contact him at
the Laboratory for Advanced Information Tech-
nology, University of Maryland, Baltimore
County, 1000 Hilltop Circle, Baltimore, MD
21250; stolia1@csee.umbc.edu.

10

The Swoogle Semantic Web Search Engine

Web search engines like Google have made people “smarter” by providing ready access to the
world's knowledge whenever they need to look up a fact, learn about a topic or evaluate opin-
ions. The W3C's Semantic Web effort aims to make such information more accessible to com-
puter programs by encoding it on the Web in machine understandable form. The Semantic Web
languages RDF and OWL are being used to encode knowledge and to build a new layer of ser-
vices, tools and applications supporting “semantic interoperability” in distributed systems. As the
volume of RDF encoded knowledge on the Web grows, software agents will need their own
search engines to help them find the relevant and trustworthy knowledge required to carry out
their tasks. This paper discusses the general issues underlying the indexing and retrieval of RDF
based information and describes Swoogle, a crawler based search engine whose index currently
contains information on over a million RDF documents. Swoogle also serves human knowledge
engineers by helping them to find Semantic Web ontologies, terms and instance data and to un-
derstand how and by whom they are being used. We will present some statistics derived from
Swoogle's databases that characterize the current state of the Semantic Web.

Search on the Semantic Web differs from conventional Web search for several reasons. First,
Semantic Web content is intended to be published by machines for machines—tools, Web ser-
vices, software agents, information systems, and so forth. Although Semantic Web annotations
and markup can help users find human-readable documents, there will likely be an “agent layer”
between human users and Semantic Web search engines.

Second, knowledge encoded in Semantic Web languages such as RDF differs from both the
largely unstructured free text found on most Web pages and the highly structured information
found in databases. Such semi-structured information requires using a combination of techniques
for effective indexing and retrieval. RDF and the Web Ontology Language (OWL) introduce as-
pects beyond those used in ordinary XML, allowing users to define terms (for example, classes
and properties), express relationships among them, and assert constraints and axioms that hold
for well-formed data.

Third, a single Semantic Web document can be a mixture of concrete facts, class and property
definitions, logical constraints, and metadata. Fully understanding the document can require sub-
stantial reasoning, so developers must face the design issue of how much reasoning search en-
gines can do and when they should do it. This reasoning produces additional facts, constraints,
and metadata that may also need to be indexed, potentially along with the supporting justifica-
tions or provenance. Conventional search engines do not try to understand document content be-
cause the task is just too difficult and requires more research on text understanding.
Finally, the graph structure formed by a collection of Semantic Web documents differs signifi-
cantly from the structure that emerges from a collection of HTML documents. This difference
influences both the development of effective strategies for automatically discovering Semantic
Web documents and the establishment of appropriate metrics for ranking their importance.

11

The Swoogle semantic web search system has been running as a web based service since the fall
of 2005. The first of these papers describes the operation of the current system and the second
describes some of the use cases for which is was designed and the results of using Swoogle to
investigate the state of the Semantic Web.

Search Engines for Semantic Web Knowledge

We include a paper by Li Ding, and Tim Finin that appeared in the Proceedings of XTech 2006:
Building Web 2.0 in May 2006. The paper provides a good overview of the Swoogle semantic
web search system.

Characterizing the Semantic Web on the Web

We include a paper by Li Ding, and Tim Finin that appeared in the Proceedings of the 5th Inter-
national Semantic Web Conference in November 2006. This paper explores a perspective for the
Semantic Web that we call the Web aspect of the Semantic Web -- its use by independent and
distributed agents who publish and consume data on the World Wide Web. To better understand
this central use case, we have harvested and analyzed a collection of Semantic Web documents
from an estimated ten million available on the Web. Using a corpus of more than 1.7 million
documents comprising over 300 million RDF triples, we describe a number of global metrics,
properties and usage patterns. Most of the metrics, such as the size of Semantic Web documents
and the use frequency of Semantic Web terms, were found to follow a power law distribution.

12

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

Search Engines for Semantic Web Knowledge

Tim Finin and Li Ding
University of Maryland, Baltimore County

Baltimore MD 21250 USA

finin@umbc.edu, dingli1@cs.umbc.edu

Introduction
Web search engines like Google have made people “smarter” by providing ready

access to the world's knowledge whenever they need to look up a fact, learn about a
topic or evaluate opinions. The W3C's Semantic Web effort aims to make such
information more accessible to computer programs by encoding it on the Web in
machine understandable form. The Semantic Web languages RDF [BEC04] and OWL
[DEA04] are being used to encode knowledge and to build a new layer of services, tools
and applications supporting “semantic interoperability” in distributed systems. As the
volume of RDF encoded knowledge on the Web grows, software agents will need their
own search engines to help them find the relevant and trustworthy knowledge required
to carry out their tasks. This paper discusses the general issues underlying the indexing
and retrieval of RDF based information and describes Swoogle, a crawler based search
engine whose index currently contains information on over a million RDF documents.
Swoogle also serves human knowledge engineers by helping them to find Semantic
Web ontologies, terms and instance data and to understand how and by whom they are
being used. We will present some statistics derived from Swoogle's databases that
characterize the current state of the Semantic Web.

Search on the Semantic Web differs from conventional Web search for several
reasons. First, Semantic Web content is intended to be published by machines for
machines—tools, Web services, software agents, information systems, and so forth.
Although Semantic Web annotations and markup can help users find human-readable
documents, there will likely be an “agent layer” between human users and Semantic
Web search engines.

Second, knowledge encoded in Semantic Web languages such as RDF differs from
both the largely unstructured free text found on most Web pages and the highly
structured information found in databases. Such semi-structured information requires
using a combination of techniques for effective indexing and retrieval. RDF and the
Web Ontology Language (OWL) introduce aspects beyond those used in ordinary
XML, allowing users to define terms (for example, classes and properties), express
relationships among them, and assert constraints and axioms that hold for well-formed
data.

Third, a single Semantic Web document can be a mixture of concrete facts, class
and property definitions, logical constraints, and metadata. Fully understanding the
document can require substantial reasoning, so developers must face the design issue of

13

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

how much reasoning search engines can do and when they should do it. This reasoning
produces additional facts, constraints, and metadata that may also need to be indexed,
potentially along with the supporting justifications or provenance. Conventional
search engines do not try to understand document content because the task is just too
difficult and requires more research on text understanding.

Finally, the graph structure formed by a collection of Semantic Web documents
differs significantly from the structure that emerges from a collection of HTML
documents. This difference influences both the development of effective strategies for
automatically discovering Semantic Web documents and the establishment of
appropriate metrics for ranking their importance.

The Semantic Web Model
The Semantic Web is a framework that allows publishing, sharing, and reusing data and
knowledge on the Web and across applications, enterprises, and community boundaries.
The W3C’s approach is based on the layered set of standards shown in Figure 1. The
bottom two layers provide a foundation, using XML for syntax and uniform resource
identifiers (URIs) for naming. The middle three layers provide a representation for
concepts, properties, and individuals based on the RDF, RDF Schema (RDFS) [BRI04]
and OWL. The top-most layers, still under development, extend the semantics to
represent inference rules, a logic framework, proofs, and trust.

These languages and concepts can be used in contexts other than as Web documents,
including storing information in databases, exchanging data in messages and even
describing the contents of networking packets. For our purposes, however, we are
interested in the use of RDF to encode information on Web pages, what we will call the
Semantic Web on the Web. In this view, the Semantic Web consists of Semantic Web
documents (SWDs) typically published as Web pages encoded in XML or one of
several other encoding languages. Figure 2 shows a simple SWD encoded using the
RDF/XML syntax and figure 3 depicts its representation as a graph.

14

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

Figure 1: Tim Berners-Lee’s layer cake of enabling Semantic Web
standards and technologies.

 1:<?xml version=“1.0” encoding=“utf-8”?>

 2:<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

 3: xmlns:owl=“http://www.w3.org/2002/07/owl#”

 4: xmlns:foaf=“http://xmlns.com/foaf/0.1/” >

 5: <foaf:Person>

 6: <foaf:name>Li Ding</foaf:name>

 7: <foaf:mbox rdf:resource=“mailto:dingli1@umbc.edu”/>

 8: <owl:sameAs rdf:resource=“http://www.csee.umbc.edu/~dingli1/foaf.rdf#dingli”/>

 9: </foaf:Person>

10:</rdf:RDF>

Figure 2. An example Semantic Web document written in RDF/XML. The SWD is
available at http://ebiquity.umbc.edu/get/a/resource/134.rdf.

Line 1 declares that this is an XML document. Lines 2-4 further define the content to be
an RDF document and provide abbreviations for three common “namespaces” for RDF,
OWL, and Friend of a Friend (FOAF), which defines classes and properties for
describing people, their common attributes, and relations among them. The SWD’s
vocabulary consists of literals (‘Li Ding’ in line 6), URI-based resources
(mailto:dingli1@umbc.edu in line 7), and anonymous resources (lines 5-9). Users assert
statements using RDF triples such as the one starting at line 5, which has an anonymous
resource as the subject, rdf:type as the predicate, and foaf:Person as the object. A
higher level of granularity is class-instance, which RDFS’s object-oriented ontology
constructs offer. Lines 5-9 assert that “there is an instance of a foaf:Person having
foaf:name Li Ding, foaf:mbox mailto:dingli1@umbc.edu, and this instance is
owl:sameAs, identified by http://www.csee.umbc.edu/~dingli1/foaf.

Figure 3: The RDF document in figure 2 has a simple representation as a graph.

15

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

A variation on this model is starting to become more popular – embedding Semantic
Web content in HTML or XHTML pages. The microformats [KHA06] idea is being
used by many as a way to include “semantic” information in HTML links. A more
principled approach is being taken by a W3C working group which has developed
RDF/A as a set of attributes used to embed RDF in XHTML. Currently this approach
is still largely experimental. Microformats are supported by a somewhat informal
standardization process and RDF/A has not yet reached the status of a recommended
standard.

The Semantic Web on the Web can also be thought of as a collection of loosely
federated databases that separates physical Web storage (enforced by online SWDs)
from the logical representation (enforced by the RDF graph model). In this view, the
Semantic Web represents a large, universal RDF graph whose parts are physically
serialized by SWDs distributed across the Web. However, the formal semantics
associated with Semantic Web languages support generating new facts from existing
ones, while conventional databases only enumerate all facts.

Searching the Semantic Web

Search engines for both the conventional Web and the Semantic Web involve the same
set of high-level tasks: discovering and harvesting documents, processing search queries
from users and agents, ranking search results, caching and archiving documents, and
providing human interfaces and software APIs. Figure 4 shows the high-level
architecture of Swoogle. We’ll discuss how we’ve approached each of these in turn for
the Swoogle Semantic Web search engine.

16

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

Figure 4: Swoogle’s high-level architecture reveals its major components for
harvesting, search, archiving and interfacing.

Harvest

Conventional search engines employ crawlers to harvest new Web documents. A typical
crawler starts from a set of seed URLs, visits Web documents, and traverses the Web by
following the hyperlinks found in the visited documents. The fact that the Web forms a
well-connected graph and that people can manually submit new URLs make this an
effective process. A Semantic Web crawler must deal with several problems. SWDs
are still needles in the Web’s haystack, so an exhaustive crawl of the Web is not an
efficient approach. Moreover, the global SWD graph is not yet as dense and well-
connected as that formed by conventional Web pages. Finally, many of the URLs found
in SWDs reference conventional Web resources. Following these links can be
computationally expensive, so heuristics to limit and prune candidate links are
beneficial.

The URLs of SWDs be collected by manual submission or meta-search on conventional
Web search engines. However, these sources usually have partial view of the Semantic
Web. Conventional HTML crawling usually generates huge overhead, but it is useful in
harvesting SWDs linked by certain hubs. RDF crawlers (also known as scutters) can
extract links from the parsed RDF graph, but the link indicators should not be limited to
rdfs:seeAlso [BID04]. Finally, using conventional Web search engines like Google to
find documents with filetypes suggesting Semantic Web content has problems with both

17

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

precision and recall.

Swoogle implements a hybrid approach with several components, including a Google
meta-search engine, an RDF crawler and a focused HTML crawler. Manual submission
of URLs is used to bootstrap the seeds for Google and bounded HTML crawling. The
two crawlers are used to automatically collect the seeding URLs of RDF crawling. The
RDF crawler visits and revisits URLs to maintain an up-to-date picture of the Semantic
Web, and selectively harvests new seeding URLs for itself using syntactic and semantic
parsing results. The harvested SWDs are then used as training data to inductively
generate new seeds for Google and HTML crawling.

Search

A search engine’s core task is processing queries against the data it has indexed. While
queries to Web search engines return documents, the results of a Semantic Web search
query can be more or less than a document. As Figure 5 shows, a Semantic Web can
aggregate data at several levels of granularity, ranging from the universal graph of all
RDF data on the Web to a single RDF triple or even the constituent terms such as a
URI. These levels of granularity results in the following frequently encountered
search targets:

• URIs having class/property usage by metadata. For example, “Find classes
which are immediate subclasses of foaf:Person”. For Semantic Web content,
these terms are analogous to words in natural language. This search helps users
to generate Semantic Web data and queries.

• URLs of SWDs by RDF graph. For example, find documents that have a
foaf:Person instance with a foaf:mbox equal to “mailto:dingli1@umbc.edu”
and foaf:name equal to “li ding”. This search helps users find documents on the
Semantic Web that provide (partial) evidences for a given RDF graph.

• Search for URLs of SWDs by metadata. For example, find documents that use
the OWL namespace and define properties with local names including ‘before’
or ‘after’. This search shows users' interest in the physical storage of Semantic
Web data since an SWD is the basic data transfer packet on the Web and its URL
made the data addressable. This level of granularity helps improve efficiency in
filtering out huge amounts of irrelevant knowledge. Some documents, such as
those representing consensus ontologies, are intended for sharing and reuse.
Discovering and using them is essential to achieving the goal of semantic
interoperability.

18

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

Figure 5: The granularity levels range from the universal graph comprising all RDF data
on the Web to individual triples and their constituent resources and literals.

The search targets are essentially references, but the search constraints vary. The
second one uses RDF graph as search constraint, and requires an RDF database storing
all triples and their provenance. The first and third scenarios are similar to dictionary
lookup and Web search, respectively. Using a compact metadata model can avoid the
prohibitive space cost for storing all triples.

The annotation metadata of URI includes the namespace and local-name extracted from
the term’s URI; the literal description of the term from different SWDs. The annotation
metadata of SWDs includes metadata about itself (such as document URL and last-
modified time) and its content (such as terms being defined or populated and ontology
documents being imported). Moreover, Swoogle maintains relational metadata that let
users to combine keyword search and surfing to locate search targets.

Rank

Google was the first search engine to order its search results based in part on a Web
page’s “popularity” as computed from the Web’s graph structure. This idea has turned
out to be enormously useful in practice and is equally applicable to Semantic Web
search engines. However, Google’s PageRank [PAG98] algorithm, which is based on
the “random surfer model”, cannot be directly used in the Semantic Web for several
reasons. URIs in a document are not merely hyperlinks but semantic symbols
referencing classes, Semantic Web instances, ontology documents, normal Web
resources, etc. Semantic Web surfing is not merely random hyperlink-based surfing
but rational surfing that requires understanding the semantic content of documents.

19

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

legends

document
(SWD)

RDF
resource

surfing
path

swt2

swt3

node4

d1
o1

d3

o2

node5

imports

ns3
hasNamespace

hasOfficialOntology

sameURL

swt1

hasDefinitionIn

hasDefinitionIn

STOP

Uniform
random
Jump

Start

d1

swt3

1. SELF-DEF
d1 => d1

2. IMP-DEF
d1 => o1

3. EXT-DEF
d1 => o2

4. LINK
d1 => d2 or
d1 => d3

5. NO-OUTLET

R
an

do
m

 Ju
m

p
by

 te
rm

 fr
eq

ue
nc

y

random terminate

ns4

sameURL

hasNamespace
d2

Figure 6: Swoogle’s ranking algorithm for is based on a “rational surfer model”
that captures how a program might access links in processing Semantic Web
documents.

In order to rank the popularity of Semantic Web documents, we adopt the surfing model
in which a rational surfer always recursively pursues the definition of classes and
properties for complete understanding of a given RDF graph. Figure 6 illustrates the
rational surfing behavior of a software agent, which unfolds as follows. The agent
jumps randomly to one of the accessible SWDs with uniform probability. It either
terminates surfing with constant probability or chooses one RDF node in the RDF graph
of the document, and the node is chosen based on its term frequency in the N-Triples
version of the document. The agent either surfs to another document or terminates
surfing based on the semantics of the chosen node. Paths 1, 2 and 3 represent the
agent pursuing a definition. If the node is not anonymous and is used as a class or
property usage in the present document, the agent pursues its definition from the present
document, the imported ontologies, or the ontology addressed by the namespace parted
of the node's URI. Path 4 shows the hyper-link based surfing behavior: if the node is not
anonymous and is not used as a class or property, the surfer follows the URL obtained
from its URI or namespace to another Semantic Web document. Path 5 includes all
cases when no further surfing path starts from the present node, e.g., the present node is
literal or anonymous, or the present node's URI links to a normal Web document.

Archive

Like most search engines, Swoogle keeps a cache of the Semantic Web documents it
indexes. Swoogle goes beyond this, however, in two ways. First, it also maintains a
copy of each documents representation as a set of triples, a more useful form for

20

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

programs and agents. Second, and more significantly, Swoogle maintains an archive
of all of the current and old versions of each Semantic Web document in its index.
The resulting Semantic Web Archive can be used by researchers to study how
ontologies evolve, to track the growth of documents containing RDF data or to
investigate the natural life cycle of Semantic Web documents.

Applications

To explore what services a Semantic Web search engine can provide and evaluate how
well Swoogle provides them, we have used Swoogle to support several applications and
use cases. These projects include helping researchers find ontologies and data, semantic
search over documents representing proofs, and finding and evaluating semantic
associations in large graph databases.

In the NSF-supported SPIRE project [FIN04][PAR06] , a group of biologists and
ecologists is exploring how to use the Semantic Web to publish, discover, and reuse
models, data, and services. Researchers need to find appropriate ontologies and terms
for annotating their data, and they also need resources for discovering data and services
others have published.

With Swoogle’s ontology search interface, users can search for existing ontology
documents that define terms in which user-supplied keywords are the substring of their
local-name. For example, to find an ontology to use for describing temporal relations,
the search might use the keywords before, after and interval. Swoogle’s ontology
dictionary provides definitions of properties or classes for a given set of keywords. It
can assemble and merge definitions from multiple sources, list terms sharing the same
namespace or the same local-name, and list associations between classes and properties.
Those associations can either be “ontological” (for example, the foaf:knows property is
defined as existing between instances of foaf:person), or “empirical” (for example,
applying the dc:creator property to an instance of foaf:Person). Judging the rank or
popularity of terms and ontologies is also relevant. Community consensus models as
reflected in ontologies tend to be ranked highly, thus searches use them more often.

Researchers are using Swoogle in conjunction with the Inference Web (IW) [PIN03]
which explicitly represents proofs using the PML ontology [PIN04]. One IW
component, IWSearch (http://iw4.stanford.edu/iwsearch/IWSearch/), uses Swoogle to
discover newly published or updated PML documents on the Web and itself is powered
by a specialized instance of Swoogle to index and search instances found in a corpus of
more than 50,000 PML documents. Indexing the conclusion part of a proof NodeSet
instance can lead to the discovery of additional NodeSets sharing the same conclusion
as the one from the given justification tree, thus expanding the justification tree with
additional proofs.

SEMDIS, an NSF project jointly conducted with researchers at the University of
Georgia is also using Swoogle. This project is automating the discovery, merging, and
evaluation of semantic associations in data drawn from a variety of information sources.
SEMDIS augments information collected from the Semantic Web with additional data

21

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

extracted from text documents and databases [ALE06]. The result, encoded as a large
RDF graph along with provenance assertions and trust information, is processed to
discover and evaluate “interesting” semantic associations. SEMDIS conducts two kinds
of Semantic Web searches: searching for a semantic association (i.e., a connected
subgraph) in the large-scale RDF graph, and searching for additional SWDs that
(partially) support a given semantic association. The first kind of search finds paths
between two nodes in a graph, a common issue in RDF databases. The second is a
provenance search to find a set of SWDs that (partially) imply a hypothesized semantic
association. Researchers have prototyped this type of search as a RDF molecule-based
approach [DIN05b].

State of the Semantic Web

How big is the Semantic Web? Is it widespread or being used by a small number of
academic sites? How fast is its use growing? How many ontologies have been published
and which are the most popular ones? A Semantic Web search engine like Swoogle can
help answer such questions through studies on its collection of documents.

A single, metric such as the number of public RDF documents on the Web is an overly
simple measure by which to chart the adoption and evolution of the Semantic Web
vision. Nonetheless, it is worth computing, at least as an initial measure. For various
reasons, we have prevented Swoogle from trying to find and index every published
RDF document. We have, however, developed a methodology to estimate upper and
lower bounds for the number of accessible Semantic Web documents using Google
queries.

We estimate the lower bound using Google's filetype query feature. Since most Web
documents having special filetype extensions such as “rdf” and “owl” are mainly SWDs
and the keyword “rdf” is present in almost all SWDs, the Google query

rdf filetype:rdf OR filetype:owl OR filetype:rss OR filetype:xml OR
filetype:n3 OR filetype:nt

returns results that are mostly SWDs. This query, which currently returns 5.9 million
results, indicates that at least this many SWDs are available on the Web and known to
Google.

The upper bound is hard to estimate for several reasons. First, Google does not index
all SWDs. For example, Google has indexed several hundred SWDs from the
LiveJournal blogging community while LiveJournal publishes a FOAF document for
each of its 10 million users. Second, our simple Google query misses some SWDs
indexed by Google. Searching for “inurl:rss –rdf -filetype:html” finds many files that
use the RSS RDF standard [RSS01]. For a rough upper bound, we use the Google
query

rdf OR inurl:foaf OR inurl:rss -filetype:html

which currently returns about 240 millions results and suggests that there are on the

22

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

order of 108 to 109 SWDs available on the Web.

Swoogle has harvested three millions candidate URLs and confirmed that 1.3 million of
these are SWDs as of March 2006. Swoogle considers a document to be a SWD if it can
be successfully parsed by Jena [MCB02] and produces triples. This number is less than
the lower bound because Swoogle has limited access to Google's index and we have
intentionally limited the number of documents collected from LiveJournal and several
other sites with a large number of SWDs. We consider Swoogle’s current collection,
which is continually growing, to be the largest and least biased collection of Semantic
Web Documents available. The following statistics are based on our analysis on these
1.3 million SWDs.

80401, 2
100517, 1

1, 125911

2, 17474
3, 5200

y = 6236.7x-0.6629

R2 = 0.9622

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000
m: # of SWDs

y:
 #

 o
f w

eb
si

te
s

ho
st

in
g

>=
 m

 S
W

D
s

Figure 7: The cumulative distribution of the number of Semantic Web
documents across Web sites follows the power law.

The 1.3 million SWDs are distributed among 125,911 websites, where a website is
identified by a triple of (protocol, domain name, port number). Figure 7 shows the
cumulative distribution of the number of SWDs per Web site, which generally follows
power law distribution. The tail of the curve has a sharp drop when approaching
100,000 in x-axis because our crawling strategy prefers harvesting the first 10,000
SWDs from each website. The head of the curve also has a sharp drop due to virtual
hosts: some content publishing websites automatically offer users a unique virtual host
name under its domain.

Figure 8 shows the ten Web sites hosting the largest number of pure SWDs, i.e., RDF
documents as opposed to those with embedded RDF content. The unpinged urls have
not yet been accessed and categorized. Each of these websites is specialized in
publishing one type of SWDs, such as personal profiles (e.g., FOAF documents),
personal blog RSS feed documents, portable proofs (e.g., PML documents) and
publication information.

23

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

Website # pure SWDs # unpinged
URLs

Content
type

www.livejournal.com 100,518 79,331 foaf

www.tribe.net 80,402 25,151 foaf

www.greatestjournal.com 62,453 835 foaf

onto.stanford.edu 45,278 206 pml

blog.livedoor.jp 31,741 6,733 foaf

www.ecademy.com 23,242 3,281 foaf

www.hackcraft.net 16,238 0 dc, book

www.uklug.co.uk 13,263 2 rss

users.livejournal.com 12,783 40,211 foaf

ch.kitaguni.tv 11,931 3,010 rss
Figure 8: The ten internet domains with the largest number of Semantic
Web Documents.

We further count domain names, semantic web ontologies and pure semantic web
documents for each top-level domain. Figure 9 shows that the .com domain has the
largest contribution to Semantic Web data and Semantic Web websites while the .edu
domain has the largest contribution to Semantic Web ontologies. The number of SWDs
we consider to be ontologies (SWOs) is 28,564 when we filter out PML documents
which contains ontological definition but are not intended to be ontologies. Swoogle
considers an SWD to be an ontology if the number of its triples contributing to term
definitions exceeds a threshold value.

24

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

0%
10%
20%
30%
40%
50%
60%
70%
80%

com jp net org biz de uk edu us pt other

websites SWOs pure SWDs

Figure 9: The distribution of Semantic Web ontologies (SWOs) and documents
(SWDs) differs across the various Internet top level domains.

The size of an SWD is usually computed using the number of triples in the SWD's RDF
graph. The mean size of an SWD in Swoogle’s collection is 181 triples. Since many
SWDs are generated by software under certain structure, some sizes are frequently
observed among SWDs, for example, many PML documents have exactly 28 or 36
triples and many RSS documents have exactly 130 triples. Further investigation shows
that the size of embedded SWDs are usually quite small -- 69% have exactly three
triples and 96% have no more than ten triples. The size of pure SWDs varies
considerably, with 60% having between five and 1000 triples.

The age of an SWD is measured by the difference between the current time and the last-
modified time of the SWD. Figure 10 plots the cumulative distribution of the number of
pure SWDs and SWO having been last modified before the date in X-axis. The plot
excludes SWDs which does not have last-modified time specified in HTTP header and
the 100K SWDs that have gone offline before March 2006.

The ‘pswd’ curve exhibits exponential growth; intuitively, the growth implies that either
the many new PSWDs have been added to the Semantic Web and/or many old PSWDs
have been updated recently. This statistics supports a promising hypothesis that the
semantic web is growing rapidly. The ‘swo’ curve is plotted after filtered PML
documents. Swoogle’s data shows that the growth in the number of ontologies
continues but appears to be slowing. This can be explained by an increase in the reuse
of existing ontologies as the Semantic Web matures – a good sign.

25

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

y = 2E-48e0.0032x

1

10

100

1000

10000

100000

1000000

7/20/1995 4/15/1998 1/9/2001 10/6/2003 7/2/2006

pswd swo (pml filtered) Expon. (pswd)

Figure 10: The distribution of the number of pure SWDs and SWOs having been last
modified before the given date.

The 1.3 million SWDs contribution 237,645,189 triples (we simply sum up triples from
each SWDs without merging equivalent ones), and 1,415,054 distinct Semantic Web
terms (which has class/property usage in SWDs) using 11,648 namespaces.

Figure 11 shows the usage pattern of Semantic Web terms (SWTs) and introduces some
interesting observations. Most SWTs (95%) are defined or referenced without being
actually populated, while some SWTs (1.8%) are populated without being defined.
Some SWTs (0.1%) are mistakenly used as both a class and as a property. A
significant number (5.3%) are used even though they have not been defined. While
some of these are undefined because they are from XMLSchma, most are due to
typographic errors, misspellings, inaccessible defining documents, or other problems.
A common question posed by Semantic Web knowledge consumers is what kind of
knowledge is available. One way to answer this question is by analyzing the instances
found on the Semantic Web, i.e., how SWTs, classes and properties, are used to create
instances and make assertions about them. We have examined the cumulative
distribution of the number of SWTs associated with at least m instances/SWD. And
found that the graphs for both classes and properties follow a power law distribution.
Swoogle’s collection also shows that relatively few SWTs have been used to define
large amounts of data. For example, 370 classes have been used to create instances in
more than 100 SWDs and 1700 classes have more than 100 instances. The same is
true for properties with about 1200 properties used to assert values for instances in than
100 SWDs and about 4600 properties used in more than 100 assertions.

26

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

SWT usage pattern # swd comments
defined as class but not populated 1,001,571 ontology
defined as property but not populated 91,238 ontology
referenced as class only 59,289 mistakes
defined and populated as class 19,000 good practice
populated property without definition 14,266 bad practice
class defined w/o description or instances 12,929 bad practice
defined and populated as property 12,326 good practice
property defined w/o description or instances 11,291 bad practice
populated class without definition 7,761 bad practice
referenced as property only 5,672 mistakes
property defined & populated w/o description 1,940 ok practice
class defined & populated w/o description 711 ok practice
property usage w/o explicit definition 67 bad practice
class usage w/o explicit definition 449 bad practice
used/defined/referenced as class & property 1159 mistakes
Figure 11: Swoogle’s collection reveals some interesting observations about how
Semantic Web Terms (SWTs) are used and abused.

The ten terms most often associated with instances are shown in Figures 12 and 13,
ordered by the number of documents and instances, respectively. The first number of
SWDs indicates the class's popularity and the number of instance indicates the richness
of instance space. Although the number of an SWT’s class instances is often
proportional to the number of SWDs populating the SWT, exceptions exist, for example,
the WordNet Noun class has over 2 million instances but these come from just 36 large
documents. Similar observations can be made about the use of properties.
Swoogle’s collection demonstrates that a small number of ontologies (e.g., FOAF, DC,
RSS) and schema files (e.g., RDF, RDFS, OWL) dominate current Semantic Web
vocabulary. Some database dumps from several authorities, such as WorldNet, NIH,
CYC, IEEE, also contribute significant amount of Semantic Web instance data using
giant instance document. For example, tag:govshare.info,2005:rdf/vote/option
contributed 1,965,182 property instances in 14 SWDs.

Our initial studies of Swoogle’s collection leads us to believe that the Semantic Web
has already reached a significant size, as measured by the total number of documents
and the number of sites over which they are distributed.

27

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

resource URI SWDs instances

http://xmlns.com/foaf/0.1/Person 467,806 11,040,981

http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq 267,603 277,608

http://purl.org/rss/1.0/channel 259,417 265,700

http://purl.org/rss/1.0/item 241,984 3,971,918

http://xmlns.com/foaf/0.1/Document 220,064 242,994

http://xmlns.com/foaf/0.1/PersonalProfileDocument 178,946 178,975

http://www.w3.org/2003/01/geo/wgs84pos#Point 85,695 107,859

http://www.w3.org/2002/07/owl#Class 62,867 1,075,220

http://www.w3.org/1999/02/22-rdf-syntax-ns#Property 57,561 503,829

http://www.w3.org/1999/02/22-rdf-syntax-ns#List 53,726 54,491
Figure 12: The top ten SWTs ranked by the number of documents containing instances.

resource URI SWDs instances

http://xmlns.com/foaf/0.1/Person 467,806 11,040,981

http://purl.org/rss/1.0/item 241,984 3,971,918

http://www.cogsci.princeton.edu/~wn/schema/Noun 36 2,376,900

http://xmlns.com/wordnet/1.6/Person 2,823 1,138,374

http://xmlns.com/foaf/0.1/chatEvent 2,693 1,138,182

http://www.w3.org/2002/07/owl#Class 62,867 1,075,220

http://www.nlm.nih.gov/mesh/2004#Concept 18 734,706

http://www.daml.org/2002/02/telephone/1/areacodes-
ont#Exchange 768 614,400

http://www.w3.org/1999/02/22-rdf-syntax-ns#Property 57,561 503,829

http://www.cogsci.princeton.edu/~wn/schema/Verb 36 436,572
Figure 13: The top ten SWTs ranked by the number of instances.

28

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

Conclusions

As the Web has grown in size, search engines have become a critical component of its
infrastructure, and there is an increasing need for search engines that can efficiently
handle Semantic Web content. While we can’t be sure what form this content will take
in the future, the current standard is based on Semantic Web documents. We are
continuing to use Swoogle to study the growth and characteristics of the Semantic Web
and the use of RDF and OWL. We are also developing new features and capabilities
and exploring how it can be used in novel applications. Many open issues remain.

One set of open problems involves scale. Techniques that work today with 5 × 106
documents may fail when the Semantic Web has 5 × 108 documents. Extending
Swoogle to index and effectively query large amounts of instance data remains a
challenge. Some of these problems could potentially be solved by moving away from
the open source software we are using and creating custom-designed index stores and
distributed systems—analogous to what Google has done for conventional Web
searches. It remains to be seen, however, if that alone would suffice.

We also need to experiment with how much and where a Semantic Web search engine
should reason over the contents of documents and queries. In previous work [FIN05] we
experimented with expanding documents using reasoning prior to indexing. A
complementary approach is to expand queries containing RDF terms [VOO94]. This is
related in part to the problem of scale—the larger the collection becomes, the less
efficient it is to reason over it.

Other issues involve trust and the use of local knowledge that is not part of the Semantic
Web. Information encoded in RDF is now being embedded in other documents, such as
PDF and XHTML documents, JPG images, and Excel spreadsheets. When techniques
for such embedding become standard, we expect the growth of Semantic Web content
on the Web to accelerate dramatically. This will add a new requirement for hybrid
information retrieval systems that can index documents based on words as well as RDF
content.

Our experience with Swoogle has given us a chance to see the growth of the Semantic
Web on the Web over the past two years. The number of RDF documents has grown
steadily while the number of underlying ontologies has grown more slowly, as might be
expected. While the numbers are still much less than the number of conventional
pages, the growth we observe makes us optimistic that the Semantic Web has a strong
future.

Bibliography
[ADI06] B. Adida and M. Birbeck (eds.), RDF/A Primer 1.0 -- Embedding RDF in
XHTML, W3C Working Draft, 10 March 2006. http://www.w3.org/TR/xhtml-rdfa-
primer/

29

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

[ALE03] B. Aleman-Meza, C. Halaschek, I. Arpinar and A. Sheth, “Context-Aware
Semantic Association Ranking,” Proceedings of the First International Workshop on
Semantic Web and Databases, September 2003.

[ALE06] B. Aleman-Meza, M. Nagarajan, C. Ramakrishnan, A. Sheth, B. Arpinar, L.
Ding, P. Kolari, A. Joshi, and T. Finin, “Semantic Analytics on Social Networks:
Experiences in Addressing the Problem of Conflict of Interest Detection", WWW 2006,
Edinburgh, Scotland, May 2006.

[BEC04] D. Beckett, RDF/XML Syntax Specification (Revised), Feb. 2004;
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

[BER01] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific
American, May 2001, pp. 35-43.

[BID04] M. Biddulph, Crawling the Semantic Web, Proceedings of XML Europe, April
2004.

[BRI04] D. Brickley and R.V. Guha, RDF Vocabulary Description Language 1.0: RDF
Schema, Feb. 2004; http://www.w3.org/TR/rdf-schema/.

[CAI04] M. Cai and M. Frank, “RDFPeers: A Scalable Distributed RDF Repository
Based on a Structured Peer-to-Peer Network,” Proceedings of the 13th International
Conference on the World Wide Web, pp. 650-657, 2004.

[CAR04] J.J. Carroll, C. Bizer, P. Hayes and P. Stickler, Named Graphs, Provenance,
and Trust, Proceedings of the 14th international conference on World Wide Web, pp
613-622, May 2005.

[DEA04] M. Dean and G. Schreiber, Web Ontology Language Reference, Feb. 2004;
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[DIN04] L. Ding et al., “Swoogle: A Search and Metadata Engine for the Semantic
Web,” Proc. 13th ACM Conference on Information and Knowledge Management,
ACM Press, 2004.

[DIN05a] L. Ding, T. Finin, A. Joshi, Y. Peng, R. Pan and P. Reddivari, Search on the
Semantic Web, IEEE Computer, volume 10, number 38, pp 62-69, October 2005.

[DIN05b] L. Ding, T. Finin, A. Joshi, Y. Peng, P. da Silva, and D. McGuinness,
Tracking RDF Graph Provenance using RDF Molecules, (poster paper), Proceedings of
the 4th International Semantic Web Conference, November 2005.

[DIN05c] L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng and P. Kolari, Finding and
Ranking Knowledge on the Semantic Web, Proceedings of the 4th International
Semantic Web Conference, November 2005.

[DIN06] L. Ding, Enhancing Semantic Web Data Access, Ph.D. Dissertation,
University of Maryland, Baltimore County, May 2006.

[EBE02] A. Eberhart, Survey of RDF Data on the Web, Proceedings of the 6th World
Multiconference on Systemics, Cybernetics and Informatics, July 2002.

[FIN04] T. Finin and J. Sachs, “Will the Semantic Web Change Science?” Science Next
Wave, Sept. 2004; http://nextwave.sciencemag.org.

30

Preprint for Tim Finin and Li Ding, Search Engines for Semantic Web Knowledge, Proceedings of XTech 2006: Building Web 2.0,
Amsterdam, 16-19 May 2006.

[FIN05] T. Finin, J. Mayfield, A. Joshi, R. Cost and C. Fink, “Information Retrieval and
the Semantic Web,” Proceedings of the 38th International Conference on System
Sciences, January 2005.

[GUO04] Y. Guo, Z. Pan, and J. Heflin, “An Evaluation of Knowledge Base Systems
for Large OWL Datasets, Proceedings of the Third International Semantic Web
Conference, pp. 274-288, 2004.

[KHA06] R. Kahare, Microformats: The Next (Small) Thing on the Semantic Web?
IEEE Internet Computing, volume 10 issue 1, pp 68-75, January 2006.

[KLY04] G. Klyne and J.J. Carroll, Resource Description Framework (RDF): Concepts
and Abstract Syntax, Feb. 2004; http://www.w3.org/TR/rdf-concepts/.

[MCB02] Brian McBride, Jena: A Semantic Web Toolkit, IEEE Internet Computing,
pp. 55-59, volume 6, issue 6, November 2002

[PAG98] L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation
Ranking: Bringing Order to the Web, technical report, Stanford Digital Library
Technologies Project, Stanford University, 1998.

[PAR06] C. Parr, A. Parafiynyk, J. Sachs, L. Ding, S. Dornbush, T. Finin, T. Wang and
A. Hollender, Integrating Ecoinformatics Resources on the Semantic Web, poster paper,
Proceedings of the 15th International World Wide Web Conference, May 2006.

[PIN03] P. Pinheiro da Silva, D. McGuinness and R. McCool, “Knowledge Provenance
Infrastructure,” Data Eng. Bulletin, vol. 26, no. 4, 2003, pp. 26-32.

[PIN04] P. Pinheiro da Silva, D. McGuinness and R. Fikes, A Proof Markup Language
for Semantic Web Services, technical report KSL04-01, Knowledge Systems
Laboratory, Stanford University, 2004.

[RSS01] RDF Site Summary (RSS) 1.0, http://web.resource.org/rss/1.0/spec

[SHE05] A. Sheth et al., “Semantic Association Identification and Knowledge
Discovery for National Security Applications,” Journal of Database Management on
Database Technology, volume 16, number 1, 2005.

[VOO94] E. Voorhees, “Query Expansion Using Lexical-Semantic Relations,”
Proceedings of the 17th International Conference Research and Development in
Information Retrieval, 1994.

31

Characterizing the Semantic Web on the Web�

Li Ding1 and Tim Finin2

1 Knowledge Systems Laboratory
Stanford University, Stanford CA 94305

ding@ksl.stanford.edu
2 Computer Science and Electrical Engineering

University of Maryland, Baltimore County, Baltimore MD 21250
finin@umbc.edu

Abstract. Semantic Web languages are being used to represent, encode and ex-
change semantic data in many contexts beyond the Web – in databases, multia-
gent systems, mobile computing, and ad hoc networking environments. The core
paradigm, however, remains what we call the Web aspect of the Semantic Web
– its use by independent and distributed agents who publish and consume data
on the World Wide Web. To better understand this central use case, we have har-
vested and analyzed a collection of Semantic Web documents from an estimated
ten million available on the Web. Using a corpus of more than 1.7 million docu-
ments comprising over 300 million RDF triples, we describe a number of global
metrics, properties and usage patterns. Most of the metrics, such as the size of
Semantic Web documents and the use frequency of Semantic Web terms, were
found to follow a power law distribution.

1 Introduction

Unpacking the phrase Semantic Web immediately produces its two constituent concepts:
it is (i) a semantic framework to represent the meaning of data that is (ii) designed for
use on the Web. Most current research, both basic and applied, has focused on the first of
these and largely ignored the second. An obvious lesson from the last ten years of Web-
based developments is we must not underestimate the impact of the (still emerging)
Web on technology and society.

Reviewing recent papers in journals and conferences one finds many on all aspects
of RDF and OWL as knowledge representation languages – complexity, scalability,
completeness, efficient reasoning algorithms, integration with databases, rule exten-
sions, expressing uncertainty, human friendly encodings, etc. Developing systems and
tools that use these languages for ontology engineering, visualization, manual markup,
etc. is also a popular topic. Finally, application papers typically center on using RDF
based representations to express the knowledge and data needed for particular problem
domains, such as workflow models, action descriptions, healthcare records, policy en-
forcement, or user preferences. For the most part, this work touches little on issues that
stem for the (initial) intended use of Semantic Web languages for publishing and using
ontologies and data on the World Wide Web.

� Partial support was provided by NSF awards ITR-IIS-0326460 and ITR-IDM-0219649.

preprint to appear in the proceedings of the 5th International Semantic Web
Conference, 5-9 November2006, Athens GA USA.

 preprint

32

A great deal of practical work has been done, of course, on developing Web ap-
propriate standards for the Semantic Web and harmonizing them with existing Web
standards and practices. Many applications and testbeds have also focused on core Web
paradigms, such as semantically enhanced Web services and policy-driven negotiation
for Web resource access. Our claim is that we need more research on modeling and un-
derstanding how Semantic Web concepts and technology is and can be used on the Web.
In this respect, we stand on the shoulders of those who call for “Creating a Science of
the Web” [1].

There are also many useful and important applications of Semantic Web languages
and systems that do not involve the Web. RDF and OWL are used in agent communi-
cation languages [2], instant messaging [3], and in GIS systems [4], to name just a few.
We believe that the Web aspect of the Semantic Web remains as the common, unifying
vision, one in which millions of people, agents and applications publish and consume
knowledge and data using the evolving Web standards and protocols [5].

In this paper, we focus on characterizing the Semantic Web on the Web, i.e., as a col-
lection of loosely federated knowledge bases that are semantically encoded in Semantic
Web languages but are physically published and consumed on the Web by independent
agents. Our work consists of three parts:

– designing a conceptual model. Instead of using the current model of the Semantic
Web, i.e., one universal RDF graph, our new model covers both structure (RDF
graphs) and provenance (Web documents and associated agents).

– creating a global catalog. A global catalog of online Semantic Web data has long
been desired but missing; therefore, we have developed effective harvesting meth-
ods and have accumulated a significant dataset.

– measuring data. Using our conceptual model, we measure the collected dataset to
derive interesting global statistics and implications.

Related work. While some research has tried to characterize the reach and patterns of
use of the Semantic Web on the Web, they have not attempted to be systematic and have
used limited datasets.

Harvesting and simple summary. A number of simple systems have been designed
to find and collect RDF documents on the web, including Eberhart’s RDF crawler [6],
OntoKhoj [7], the DAML Crawler [8]. Several repositories for Semantic Web docu-
ments have been created and maintained using a combination of manual and automatic
techniques. These include the DAML Ontology Library [9] which collected a modest
number of Semantic Web documents (at most 22,000) with a limited summary of doc-
ument properties such as parse error types, document size, documents per website, and
namespace building usage. Additional relevant work can be found in Web characteriza-
tion literature [10, 11] which studies global distributions of document properties such
as the average size of web documents.

Characterizing the universal RDF graph. Gil et al. [12] analyzed the structure of a
RDF graph that results from merging nearly 200 documents from the DAML Ontology
Library. The dataset is too limited to be a representative of the entire Semantic Web and
even the subset of ontologies on the Semantic Web.

Rating Semantic Web ontologies. Several studies have tried to measure the quality
of Semantic Web ontologies, i.e. Semantic Web documents that define or contribute

preprint preprint

33

to the definition of classes and properties. Most [13, 14] employ content analysis on
ontologies with various foci, such as building a comprehensive evaluation framework
[15], qualifying concept consistency [16, 17], quantifying the graph structure of class
and property taxonomy hierarchy [18–21], and measuring the structure and the instance
space of a given ontology [22]. These studies have been limited in two ways. First, they
have only analyzed ontologies, which we estimate account for only about 1% of the
RDF documents on the Web. Second, the empirical evaluations are based on very small
datasets, typically of fewer than 30 documents.

Characterizing social networks in FOAF. One of the most successful application of
RDF is the use of the FOAF ontology to encode social networks. Several studies [23–26]
have analyzed large amounts of FOAF data, typically by collecting FOAF documents
via specialized crawlers and then making statistical measurements on vocabulary usage
and network structure. Although the evaluation datasets are large, their sources and vo-
cabularies are limited. Most FOAF documents are obtained from a few portal websites
such the www.livejournal.com blogging system.

Contributions. Our work is a systematic study of the semantic aspect and the web as-
pect of the Semantic Web. It is highlighted by contributing a new conceptual model
of the Semantic Web on the Web, harvesting a significant dataset that is much larger
and more diverse than other existing work, and inheriting and introducing wide spec-
trum of measurements for global properties on both semantic structure and knowledge
provenance of the Semantic Web.

In section two of this paper we explain our conceptualization of the Semantic Web
on the Web. Section three briefly illustrates our harvesting methods and evaluates the
significance of harvest result. Sections four and five elaborate our metrics and findings
about the global properties of the Semantic Web and section six offers some concluding
remarks. In this paper, we assume, for simplicity’s sake, that the following namespaces
are defined: rdf for RDF, rdfs for RDF schema, owl for OWL, foaf for FOAF, dc for
Dublin Core Element and wn for WordNet.

2 The Conceptual Model of the Semantic Web on the Web

The foundation for our Semantic Web characterization is the Web Of Belief Ontology
which captures not only the semantic structure of RDF graph but also its provenance in
terms of the Web and the agent world. This paper only covers the essential notions from
the model and readers are invited to see [27] for details.

A Semantic Web document (SWD) is an atomic Semantic Web “data transfer
packet” on the Web. It is both a Web page addressable by a URL and an RDF graph
containing Semantic Web data. It can be a static or dynamic web page, for example
one generated by a database query. In particular, SWDs can be divided into pure SWDs
(PSWDs), which are completely written in Semantic Web languages, and embedded
SWDs (ESWDs), which embed RDF graphs in their text content, e.g., HTML docu-
ments containing Creative Commons license metadata.

The URI reference (URIref) of an rdfs:Resource conveys dual semantics: (i) a unique
identifier for the resource, and (ii) the Web address of the SWD defining the resource.
URIrefs are widely used to merge RDF graphs distributed on the Semantic Web. A

preprint preprint

34

resource’s semantics depends on its usage in an RDF graph. In particular, we are inter-
ested in Semantic Web terms (SWTs), i.e., named resources that have meta-usages
(being used as classes or properties) in SWDs. Six types of use are defined below and
illustrated in Figure 1. For a given RDF graph, a resource X is:

– defined as a class (DEF-C) if there exists a triple of the form (X, rdf:type, C) where
C is rdfs:subClassOf rdfs:Class. For example, foaf:Person is defined as a class in
triple t3.

– defined as a property (DEF-P) if there exists a triple (X, rdf:type, P) where P is
rdfs:subClassOf rdf:Property. For example, foaf:mbox is defined as a property in
triple t1.

– populated (or instantiated) as a class (POP-C) if there exists a triple (a , rdf:type
, X) where a can be any resource. For example, rdfs:Class has been populated as a
class in triple t3.

– populated (or instantiated) as a property (POP-P) if there exists a triple (a , X ,
b) where a and b can be any resource (or literal). For example, rdf:type has been

populated as a property in triple t3.
– referenced as a class (REF-C) if X is of type rdfs:Class according to the ontology

constructs from Semantic Web languages except rdf:type. For example, foaf:Person
is referenced as a class in triple t2.

– referenced as a property (REF-P) if X is of type rdf:Property according to ontol-
ogy constructs from Semantic Web languages except rdf:type. For example, foaf:mbox
is referenced as a property in triple t2.

rdf:type

rdfs:Classfoaf:Personfoaf:mbox

rdfs:domainrdf:type

rdf:Property t2 t3t1

Fig. 1. This RDF graph adapted from the FOAF ontology illustrates some of the relations defined
in the Web of Belief ontology.

Note that we may find multiple types of meta-usage of a URI in different SWDs,
including some rare and undesired cases: the SWT rdfs:subClassOf is defined as a prop-
erty by the RDFS ontology and also as a class by another SWD3.

Two additional concepts are used studying ontologies. Semantic Web Ontology
(SWO) is a sub-class of Semantic Web document and physically groups definitions of
SWTs. An SWO is identified by containing (i) DEF-C, DEF-P, RDF-C, REF-P meta-
usages or (ii) instances of owl:Ontology4. Semantic Web Namespace (SWN) is a sub-
class of rdfs:Resource and logically groups SWTs and enables distributed definition
(i.e., users can define the SWTs using the same SWN in different SWOs). An SWN is
identified as the namespace part of an SWT.

3 http://ilrt.org/discovery/2001/09/rdf-schema-tests/rdf-schema.rdfs
4 The Swoogle system has experimented with different heuristics for identifying a SWD as an

SWO and is currently using this very liberal one.

preprint preprint

35

3 Creating a Global Catalog

In order to build a global catalog of the Semantic Web on the Web, we need to harvest
publicly accessible SWDs. There are two primary difficulties: (i) SWDs are sparsely
distributed on the Web and found on sites in varying density, e.g. www.cnn.com hosts
no SWDs but www.liverjournal.com has millions; and (ii) Confirming that a document
contains RDF content requires RDF parsing which entails high cost when done for
millions of documents.

3.1 Estimating the number of online SWDs

The scale and complexity of harvesting task is dominated by the number of online
SWDs, which we have estimated using the Google search engine 5 Since Google does
not index all SWDs and its estimated total result is coarse, we use it to derived an order
of magnitude estimate of the total number of online SWDs.

In theory, the search query “rdf” would suffice because the RDF namespace is
declared by virtually all SWDs. In pracice, however, this simple Google query has two
problems. First, it does not cover all indexed SWDs. For example, many RSS 1.0 files,
which are RDF documents, are not matched by it. Second, it matches many documents
that are not SWDs. For example the query “rdf filetype:html” identifies more than 38
million HTML documents. Based on queries run on 12 May 2006, we estimate that
there are between 107 and 109 Semantic Web documents online.

– For a conservative estimate we emphasize precision and use a query where most re-
sults will be SWDs. The query “rdf filetype:rdf” produced 4.91M estimated matches.
The constraint “filetype:rdf” was chosen because it is the most common file exten-
sion used among SWDs, and more than 75% web documents using it are SWDs 6.
This yields a conservative estimate of 107 SWDs.

– For an optimistic estimate we emphasize recall using a query whose results will in-
clude most online SWDs. The query “rdf OR inurl:rss OR inurl:foaf -filetype:html”
produces about 205M results. This derives an optimistic estimate of 109 SWDs.

3.2 A Hybrid Semantic Web Harvesting Framework

Most existing harvesting methods are limited in significance or diversity. Conventional
Web crawling approaches [6, 7] are inefficient because most hyperlinks in Web docu-
ments (including SWDs) point to conventional Web documents. Similarly, brute-force
sampling, i.e., testing port 80 of reachable IP addresses [11], introduces prohibitive cost
in validating millions of web documents. Meta-search based approaches [28] are limited
by the inability to filter out conventional web documents from search engine results and
the fact that some search engines intentionally ignore SWDs. Manual submission based
approaches, such as that used for the DAML ontology library [9] and SchemaWeb [29]

5 We have found the Google and Yahoo search engines to have the most RDF documents in-
dexed, with Google having more than twice as many as Yahoo.

6 Other constraints usually returns fewer results, e.g. ”owl filetype:owl” returns 55K results.

preprint preprint

36

Manual

submission

RDF crawlingBounded HTML crawlingMeta crawling

Seeds M Seeds H Seeds R

Swoogle

Sample

Dataset

Inductive

learner

the Web

Google API call crawl crawl

true

sample

would

sample

G
o
o
g
le

e
s
tim

a
tio

n

Fig. 2. The Swoogle system uses an adaptive Semantic Web harvesting framework with three
different kinds of crawlers.

scale poorly and are difficult to maintain. RDF crawlers (also known as scutters7 or Se-
mantic Web crawlers) [30, 31] are limited because the seeding URLs (i.e., the starting
points of crawling) are hard to obtain and surfing heuristics (i.e., patterns for selecting
hyperlinks to SWDs) are often biased.

In order to effectively harvest as many as possible SWDs on the Web with minimum
cost, we developed a automatic, hybrid Semantic Web harvesting framework [27] that
integrates several harvesting methods. Figure 2 illustrates its work-flow, which has the
following major steps.

1. Bootstrapping. Manual submissions are used to bootstrap the harvesting, provid-
ing seeds for Google-based meta-crawling and bounded HTML crawling.

2. Google-based Meta-crawling. Meta crawling [32] involves directly harvesting
URLs from search engines without crawling the Web. Google is chosen because
it indexes the largest number of Web documents and offers richer query constraints
than others. We collect seeds from manual bootstrapping input and the inductive
learner that selects “good” seeds from the harvested Swoogle sample dataset. A
“good” seed is a Google query whose results contain high percentage of SWDs,
e.g., most URLs returned by the query rdf filetype:rdf are indeed SWDs.

3. Bounded HTML crawling. HTML crawling (i.e., conventional Web crawling)
harvests web documents by extracting and following hyperlinks, and is useful in
harvesting clusters of SWDs on the Web. Our bounded HTML crawling imposes
some thresholds (e.g., search depth, maximum number of URLs, and minimum
percentage of SWD) to limit search space and ensure efficiency. For example,
we have harvested many PML documents8 by a bounded HTML crawl starting at
http://iw.standford.edu/proofs. Again, manual submission and automated inductive
learner are involved in collecting seeding URLs.

7 See the Scutter specification at http://rdfweb.org/topic/ScutterSpec.
8 SWDs that populate instances of the Proof Markup Language(PML) ontology

(http://inferenceweb.stanford.edu/2004/07/iw.owl).

preprint preprint

37

4. RDF crawling. The RDF crawler enhances conventional HTML crawling by adding
RDF validation and hyperlink extraction components. It visits newly discovered
URLs and periodically revisits pages to keep metadata current. For each URL, it
tries to parse an RDF graph from the document using RDF parsers (e.g. Jena). If
successful, it generates document level metadata and also enqueues the new dis-
covered URLS that may link to SWDs.

5. Inductive learner and Swoogle Sample dataset. The sample dataset covers the
metadata of the SWDs confirmed by RDF crawling. Based on the features (e.g.
URL, term frequency, the source website) of harvested documents and their labels
(e.g. whether they are SWD, embedded SWD or non-SWD), an automated induc-
tive learner is used to generate new seeds for Google-based Meta-crawling and
Bounded HTML crawling.

The crawler schedules its methods using the following harvesting strategies: (i)
SWO harvesting has the highest priority since they are critical for users to encode and
understand Semantic Web data; (ii) PSWDs are harvested with higher priorities than
ESWDs because the former usually contain more Semantic Web data than the latter;
and (iii) we delay harvesting URLs from websites where more than 10,000 SWDs have
already been found (e.g., liveJournal) to avoid having the catalog dominated by SWDs
from a few websites.

3.3 Harvesting Result and Performance

The dataset SW06MAY resulted from harvesting data between January 2005 and May
2006. It has 3,675,153 URLs, including 1,448,504 (40%) confirmed as SWDs, 13%
confirmed as non-SWDs, 9% unreachable URLs, and 38% unpinged (not yet visited)
URLs. The confirmed SWDs are from 162,245 websites9 and contribute 279,461,895
triples. Although SW06MAY is much smaller than the Web with its 11.5 billion docu-
ments [33], it is much larger than any existing datasets, including:

– (2002) Eberhard [6] reported 1,479 valid SWDs out of nearly 3,000,000 URLs.
– (2003) OntoKhoj [7] reported 418 ontologies out of 2,018,412 URLs after 48-hour crawling.
– (2004) DAML Crawler reported 21,021 DAML files out of 743,017 URLs.

Significance of ontology discovery. SW06MAY contributes 83,007 SWOs including
many unintended ones, such as (i) instance data with unnecessary class or property
definitions or references, e.g., 55,565 (66.9%) PML documents from onto.stanford.edu,
and 882 (1.1%) semantic blog documents from lojjic.net, and (ii) instance data that
has unnecessary instances of owl:Ontology, e.g., 4,437 (5.3%) publication metadata
pages from www.aifb.uni-karlsruhe.de and more web portal metadata pages from onto-
ware.org. Therefore, the “true” number of SWOs in SW06MAY is just 22,123 (26.7%)
SWOs after removing the “unintended” ones. Moreover, this number can further re-
duced to 13,012 (15.7%) since there are many duplications 10.

9 A website is uniquely identified by its domain name (host name part of a URL) but not it’s IP
address. Virtual hosting can result in one IP address hosting many web domains.

10 We are currently detecting duplicate SWDs by simply comparing the md5sum of two tar-
get documents. While crude, the method is efficient and useful. For example, we have found

preprint preprint

38

Significance of dataset growth. The significance of SW06MAY can be verified by its
fast growth trend. Figure 3a shows the numbers of total URLs (url), pinged URLs (ping),
confirmed SWDs (swd) and confirmed pure SWDs (pswd) discovered before the date on
x-axis, and it exhibits a steady growing trend. The “ping” curve touches the “url” curve
because our harvesting strategy delays harvesting URLs from websites hosting more
than 10, 000 URLs until all other URLs have been visited. The increasing gap between
“ping” curve and “swd” curve indicates that harvesting recall increases at the expense
of the decrease of precision.

(a) dataset growth

pswd

swd

ping

url

0

1000000

2000000

3000000

4000000

1/17/05 5/17/05 9/17/05 1/17/06 5/17/06

date

(b) website coverage

1

100

10000

1000000

100000000

1 501 1001

websiteGoogle SW06MAY

Fig. 3. The SW06MAY dataset has nearly 4M URLs collected from more than 160K sites. An
analysis of the dataset demonstrates the growth in Semantic Web documents (left) and also pro-
vides evidence that our hybrid harvesting framework is sound (right).

Significance analysis on website coverage. We further evaluate the significance of
SW06MAY by comparing its website coverage (i.e., the number of pure SWDs per web-
site) with Google’s estimation. In Figure 3b, each dot on the curve denotes the web-
site coverage of one website that hosts at least ten pure SWDs. For each of the 1,355
websites in the graph, we use “Google” dots to show the optimistic Google estimation
of website coverage with an additional “site” constraint, e.g., “(rdf OR inurl:foaf OR
inurl:rss) -filetype:html site:www.cs.umbc.edu”. The figure shows that Google’s esti-
mate, even with high variance, exhibits a trend similar to SW06MAY’s estimate. We
conclude that the SW06MAY provides evidence in the basic soundness of our harvesting
approach. Moreover, we suggest three causes of the variance: (i) Google’s estimation
may be too high since it is optimistic; (ii) The Google query site constraint searches all
sub-domains of the site (e.g., site:w3.org also returns results from www4.w3.org), but
SW06MAY’s results only return results from the specified site; and (iii) our harvesting
framework may index fewer SWDs (see Google dots above the curve) because it uses
far less harvesting seeds than Google and keeps a long “unpinged” list, or index more
SWDs (see Google dots below the curve) because it complements Google’s crawling
limitation.

166 different SWDs having the same md5sum as the SWO http://purl.org/dc/terms. Trying to
proving semantic equivalence is in general, not an option.

preprint preprint

39

(a) absolute quantity view

0

100000

200000

300000

400000

com jp net org biz de uk edu us pt other

top level domain

#
 S

W
D

s
 (

o
r

W
e
b

s
it

e
s
)

websites SWOs pure SWDs

(b) relative percentage view

0%

20%

40%

60%

80%

com jp net org biz de uk edu us pt other

top level domain

p
e
rc

e
n

ta
g

e
 o

f
c
o

v
e
ra

g
e

websites SWOs pure SWDs

Fig. 4. An analysis of the SW06MAY dataset shows the distribution of SWDs and SWOs (after re-
moving unintended ones) over selected top-level domains. Codes used are jp:Japan, de:Germany,
uk:United Kingdom, us:United States, pt:Portugal, and other:remaining TLDs.

4 Measuring Semantic Web documents

SWD Top-level Domains. Analyzing the top-level domains (TLDs) of SWDs suggests
the degree to which Semantic Web data is published by region and type of organization.
Using SW06MAY we calculated the number of websites, SWDs and pure SWDs for the
top ten TLDs as shown in Figure 4. The TLDs are ordered by the number of websites.
Figure 4a shows that pure SWDs dominate the Semantic Web while SWOs are few in
number. Figure 4b reveals several points. First, the “.com” domains have contributed
the largest portion of hosts (71%) and pure SWDs (39%). Examining the data indicated
two reasons: “.com” sites make heavier use of virtual hosting technology and publish
many RSS and FOAF documents. Second, most SWOs are from “.org” domains (46%)
and “edu” (14%). This is likely due of the deep interests in developing ontologies from
academic and non-profit organizations.

SWD Source Websites. Figure 5 depicts the cumulative distribution of the number
of PSWDs per website. The curves do contain skewed parts: (i) the sharp drop at the
tail of curve (near 100,000 on x-axis) is caused by our harvesting strategy that delays
harvesting websites after finding more than 10K SWDs; and (ii) the drop at the head of
curve is due to virtual hosting technology11. Interestingly, livejournal.com is involved
in both. Both curves in Figure 5 show power law distribution and the similar parameters
of the two regressed equations support the conclusion that the distribution is invariant.

Table 1 lists the ten domains hosting the largest number of pure SWDs. The “con-
tent” column shows the topic of website, and the “unpinged” column indicates that
we intentionally delay crawling some giant websites. SWDs from these websites are
automatically generated and well inter-linked. The 6th and 9th websites are recently
promoted to this list.

SWD Age. We measure an SWD’s age by its last-modified time extracted from the
HTTP response header. Figure 6a shows cumulative distribution of last-modified time,
i.e., the number of PSWDs and SWOs with a last-modified before the date on X-axis.
SWD’s with no reported last-modified time are excluded. Note that the “pswd” curve
exhibits an exponential distribution, indicating that many new PSWDs have been added

11 Many social networking sites offer each user a unique virtual host name.

preprint preprint

40

(a) distribution collected by May 2006

1, 132972

2, 18196

3, 5507

y = 6840.6x
-0.6515

R
2
 = 0.9592

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

m: # of pure SWDs

y
:

 #
o

f
we

b
s

it
e

s
 ho

s
ti

n
g

 >=
m

S
W

Ds

(b) distribution collected by Aug 2005

y = 6598.8x
-0.7305

R
2
 = 0.9649

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1000000

m: # of pure SWDs

y
:

 #
 o

f
w

e
b

s
it

e
s

 h
o

s
ti

n
g

 >
=

 m

S
W

D
s

Fig. 5. Data from SW06MAY shows that the distribution of the number of websites hosting more
than m pure SWDs follows a power law. The straight lines correspond to regression function with
the given equations. The R2 values close to one indicate good regressions.

rank website # PSWDs # unpinged content
1 www.livejournal.com 100,518 88,962 foaf, personal profile
2 www.tribe.net 80,402 25,234 foaf
3 www.greatestjournal.com 62,453 849 foaf
4 onto.stanford.edu 45,278 403 pml, portal proof
5 blog.livedoor.jp 31,741 12,776 foaf
6 r622-1.mpiwg-berlin.mpg.de 25,733 136 vml annotation
7 www.ecademy.com 23,242 3,308 foaf
8 www.hackcraft.net 16,238 0 dc, book annotation
9 open.bbc.co.uk 14,544 350,473 dc, BBC program annotation
10 www.uklug.co.uk 13,263 2 rss

Table 1. This table lists the ten largest source websites of pure Semantic Web documents
(PSWDs) from May 2006. The unpinged column gives the number of URLs discovered on the
site that are suspected of also being Semantic Web documents but have not yet been processed.

to the Semantic Web or that many old ones are being actively modified. The “swo”
curve additionally excludes PML documents and exhibits exponential distribution with
a flat tail, which we interpret as indicating a more active ontology development earlier
in the time period transitioning to more reuse later.

Figure 6b shows two distributions of last-modified time collected in Aug 2005 and
May 2006 respectively. The difference before August 2005 represents a loss of 155,709
PSWDs and is due to documents going offline (25%) and being updated (75%). The
difference after that is caused by updated documents and newly discovered PSWDs.
The non-trivial at which PSWDs go offline significantly affects the growth of Semantic
Web data.

SWD Size. We measure an SWD’s size as the number of triples in the SWD’s RDF
graph. Figure 7a shows the distribution of SWD’s size, i.e., the number of SWDs hav-
ing exactly m triples, and Figure 7b the corresponding cumulative distribution. Figure
7c depicts the distribution of ESWD’s size. Most ESWDs are very small with 62%
having exactly three triples and 97% having ten or fewer triples. These contribute sig-
nificantly to the big peak in Figure 7a. Figure 7d shows the distribution of the size
of PSWDs, with most (60%) having five to 1000 triples. The peaks in the curve are

preprint preprint

41

(a) cumulative distribution of age of PSWDs and

SWOs in SW06MAY

y = 9E-51e
0.1006x

R
2
 = 0.9891

1

100

10000

1000000

Apr-98 Apr-00 Apr-02 Apr-04 Apr-06

date

#
o

f
d

o
c

u
m

e
n

ts

pswd swo Expon. (pswd)

(b) distributions of age of PSWD in SW05AUG

and SW06MAY

0

100000

200000

300000

400000

May-00 May-01 May-02 May-03 May-04 May-05 May-06

date

n
u

m
b

e
r

o
f

d
o

c
u

m
e

n
ts

SW05AUG SW06MAY

Fig. 6. Distributions of the last-modified time of PSWDs and SWOs.

caused by automatically generated SWDs which publish Semantic Web data in fixed
patterns. For example, many PML documents have exactly 28 or 36 triples, and many
RSS documents have exactly 130 triples12. The large number of SWOs with fewer than
four triples are mainly RDF and OWL test documents. SW06MAY’s largest SWO13 has
1,013,493 triples and defines 337,831 classes and properties.

(a) distribution of SWD's size

0

50000

100000

150000

200000

250000

1E+0 1E+2 1E+4 1E+6

triples

#
S

W
D

s

(b) cumulative distribution of SWD's size

y = 8E+07x
-1.1833

R
2
 = 0.972

1

100

10000

1000000

100000000

1E+0 1E+2 1E+4 1E+6

triples

#
S

W
D

s

(c) size distribution of embedded SWDs

0

100000

200000

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

of triples

#
 o

f
e

m
b

e
d

d
e

d
 S

W
D

s

(d) size distribution of pure SWDs

0

10000

20000

30000

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Triples

#
 p

u
re

 S
W

D
s

Fig. 7. The distributions of the number of triples per SWD

SWD Size Change. Updating a SWD usually result in in a change in its size. We have
investigated this by tracking the size changes for different versions of an SWD. The
SW06MAY dataset has 183,464 PSWDs that are alive (sill online) and for which we

12 A typical RSS file has one rss:channel with eight triples, fifteen rss:item instances each with
seven triples, and one rdf:Seq with seventeen triples connecting the rss:channel to the item
instances.

13 http://www.fruitfly.org/~cjm/obo-download/obo-all/ncbi taxonomy/ncbi taxonomy.owl

preprint preprint

42

have at least three versions. For these, 37,012 (20%) lost a total of 1,774,161 triples;
73,964 (40%) gained a combination of 6,064,218 triples, and the rest 72,488 (40%)
maintained their original size14. The statistics also show that the total number of triples
keeps increasing; therefore, we hypothesize the volume of Semantic Web data is in-
creasing.

5 Measuring Semantic Web Terms

Semantic Web Terms (SWTs) are classes and properties that are named by non-anonymous
URIrefs. The SW06MAR dataset has 1,576,927 distinct Semantic Web terms defined
with respect to 14,488 Semantic Web namespaces. We derive four SWT-usage patterns
by analyzing the combination of six basic types of meta-usages.

– Only a few classes (1.5%) and properties (1.0%) have both explicit definitions and
instances.

– Most SWTs (95.1%) have no instances, and some SWTs (2.2%) have no definitions.
– Some SWTs (0.08%) mistakenly have both class and property meta-usage.
– Some SWTs (0.08%) only have REF-C or REF-P meta-usages. While some are

XMLSchma terms and not RDF, others appear to be due to errors or misuse.

SWT Definition Complexity. A simple way to measure the complexity of a SWT is to
count the number of triples used to define it. Figure 8a shows the cumulative distribu-
tion of the size of SWT definitions in the curve labeled “all”. This follows a power law
distribution with the deviations at the head and tail reflecting a preference for defining
SWTs using a manageable number of triples, two to ten triples in most cases. Terms that
can be defined in just a few triples are not very useful, and the definitional size of com-
plex terms can be reduced by defining and using auxiliary definitions. One observed
definition has nearly 1000 triples15. We’ve divided definitional triples into two classes:
annotation and relation triples, whose rdf:objects are rdfs:Literals and rdf:objects, re-
spectively. Note that relation triples are more common. We also noticed that 104,152
SWTs have been defined in more than one SWOs.

(a) definition quality

242

118

241

y = 4E+07x
-2.1655

R
2
 = 0.9892

1

100

10000

1000000

100000000

1 10 100 1000 10000
m : number of triples

#
 o

f
S

W
T

 d
e
fi

n
it

io
n

 o
c
c
u

re
n

c
e
s

u
s
in

g
 a

t
le

a
s
t

m
 t

ri
p

le
s

all annotation relation Power (all)

(b) instance space

swd(pop-c)

instance(pop-c)swd(pop-p)

instance(pop-

p)

1

10

100

1000

10000

100000

1 100 10000 1000000 100000000

m: number of occurences

n
u

m
b

e
r

o
f

S
W

T
s
 b

e
in

g
 p

o
p

u
la

te
d

b
y
 a

s
 l
e
a
s
t

m
 o

c
c
u

re
n

c
e
s

Fig. 8. The cumulative distribution of meta-usages of SWT

14 Most of the PSWDs maintaining their size are RSS documents.
15 The SWD http://elikonas.ced.tuc.gr/ontologies/DomainOntologies/middle ontology defines

the MOSemanticRelationType class using 973 triples.

preprint preprint

43

SWT Instance Space. Since Semantic Web data include both definitions and instance
data, we measure the instance space of the Semantic Web by counting POP-C and POP-
P meta-usages of SWTs16. Figure 8b shows the cumulative distribution of the number
of SWTs populated as a class (or property) by at least m instances (or SWDs). All
four curves follow a power law distribution. For both classes and properties, most are
defined but never directly used. Only 423 classes have been instantiated by more than
100 SWDs and just 2,115 have more than 100 instances. The number of properties used
is somewhat higher, with 1,489 SWTs used to define data in more than 100 SWDs and
5,404 properties used in more than 100 assertions.

Table 2 lists popular classes and properties. The number of an SWT’s class-instances
is usually proportional to the number of SWDs populating the SWT; however, excep-
tions exist. For example, while the wn:Noun class has significant number of instances,
they are mostly in a few huge SWDs. In general, the Semantic Web’s instance space is
dominated by three categories: (i) instances of meta-ontologies such as OWL, (ii) in-
stances of a small number of very popular ontologies such as DC, FOAF, and RSS; and
(iii) instances from giant data files, such as WordNet and National Library of Medicine’s
Medical Subject Headings (MeSH) ontology.

resource URI #swd #instance
Most instantiated classes ordered by #swd
http://xmlns.com/foaf/0.1/Person 499,671 11,686,519
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq 290,321 308,907
http://purl.org/rss/1.0/channel 282,677 289,160
http://purl.org/rss/1.0/item 259,220 4,277,868
http://xmlns.com/foaf/0.1/Document 223,510 247,311
Most instantiated classes ordered by #instance
http://xmlns.com/foaf/0.1/Person 499,671 11,686,519
http://purl.org/rss/1.0/item 259,220 4,277,868
http://www.cogsci.princeton.edu/∼wn/schema/Noun 56 3,697,400
http://www.w3.org/2002/07/owl#Class 68,053 1,795,941
http://www.nlm.nih.gov/mesh/2004#Concept 38 1,551,046
Most instantiated properties ordered by #swd
http://www.w3.org/1999/02/22-rdf-syntax-ns#type 1,170,975 43,291,848
http://purl.org/dc/elements/1.1/title 801,254 13,448,548
http://xmlns.com/foaf/0.1/mbox sha1sum 462,198 2,633,739
http://purl.org/dc/elements/1.1/description 453,826 2,874,327
http://www.w3.org/2000/01/rdf-schema#seeAlso 432,288 12,330,223

Table 2. This table shows the most popular Semantic Web classes and properties based on the
number of Semantic Web documents (SWDs) that use them and, for classes, also on the number
of immediate instances.

RDFS and OWL usage. To what degree does the current Semantic Web make use
of RDFS and OWL? One simple way of addressing this question is to examine the

16 Since no RDFS or OWL inferencing is done, the statistics reflect immediate class instances.

preprint preprint

44

number of SWDs that use the RDFS and OWL namespaces. The OWL namespace has
been declared by 112,870 SWDs (8%) and actually used by 108,059 (7%). The RDFS
namespace enjoys more use, being declared by 677,049 (47%) and used by 537,614
(37%) SWDs.

What about their terms? Not surprisingly, owl:Class is the most used term from
the OWL namespace with 1,795,941 instantiations in 68,053 SWDs. Contrasting this
with rdfs:Class, which has 327,485 instantiations by 8,572 SWDs, seems to suggest that
OWL is being more heavily used than RDFS. However, the relationship is not so simple.
When examining properties, rdf:Property has 529,052 immediate instantiations from
58,598 SWDs, considerably more than the OWL property terms owl:ObjectProperty
(169,885 assertions in 8,041 SWDs) and owl:DatatypeProperty (48,386 assertions in
4,557 SWDs).

For RDFS and OWL properties, the most used properties is rdf:type, followed by
some annotation properties such as rdfs:seeAlso and rdfs:label. Among those proper-
ties that are used as ontology constructs, owl:sameAs and rdfs:subClassOf are the most
used. We also noticed significant use of two OWL equality assertions: owl:sameAs
(279,648 assertions in 17,425 SWDs) and owl:equivalentClass (69,681 assertions in
4,341 SWDs). Their common use may be an indication of increased ontology align-
ment. We have found limited use of properties that require OWL DL or OWL FULL
reasoning support. The most common one in our dataset was owl:unionOf which is used
in only 2,527 SWDs.

Instantiation of rdfs:domain. Semantic Web data is published asynchronously by au-
tonomous and distributed agents which may use, and misuse, a variety of ontologies.
Given enough data, we can attempt to reverse-engineer the definitions of classes and
terms introduced by ontologies. Consider instances of the rdfs:domain relation which
associates a class with properties that describe its instances. We have observed 111,071
unique instantiations of rdfs:domain, and the number of instantiations that have been
observed in at least m instances (or SWDs), again, follows a power law distribution.

The highly instantiated rdfs:domain relations are mainly from popular instance
space such as FOAF and RSS documents. An interesting observation is that rdfs:seeAlso
property has been frequently used as instance property of foaf:Person. This correspond-
ing definition cannot be found in the RDFS or FOAF ontologies although it has been
informally mentioned in FOAF specification. The popularity of instantiation is usually
determined by the number of SWDs that has the instantiation; moreover, we also no-
ticed a popular instantiation – the domain of wn:wordFrom is wn:Noun which has over
6.5 million occurrences in only 56 SWDs.

We can use data on the instantiations of rdfs:domain relation to derive the most
used properties of a given class. For example, for immediate foaf:Person instances, the
most common properties used are foaf:mbox sha1sum (461,922 SWDs), rdfs:seeAlso
(385,516), and foaf:nick (361,901). We can also find strong co-occurrence association
among properties of a class. The properties geo:lat (85,742) and geo:long (85,741) are
virtually always used together in modifying a class geo:Point. This kind of information
can be used to help publishers choose a good set of properties, which may be from
different ontologies, for a given class. Moreover, we can use such information in on-

preprint preprint

45

tology revision, e.g., adding the missing rdfs:domain definition or revise incompatible
definition.

6 Conclusions

The Semantic Web is not just one universal RDF graph but a federated collection doc-
uments distributed on and accessed via the World Wide Web. It must be studied from
both the Web perspective and the semantic perspective. In order to characterize the Se-
mantic Web on the Web and guide Web-scale data access, we estimated the size of the
Semantic Web using Google, implemented a hybrid framework for harvesting Semantic
Web data, and measured the results to answer questions on the Semantic Web’s current
deployment status.

The statistics where characterized by power law distributions and “complex system”
behavior in many cases and, in general, support several conclusions about the emerging
Semantic Web. (i) Semantic Web data is growing steadily on the Web even when many
documents are only online for a short-while. (ii) The space of instances is sparsely
populated since most classes (>97%) have no instances and the majority of properties
(>70%) have never been used to assert data. (iii) Ontologies can be induced or amended
by reverse engineering the instantiations of ontological definition in instance space [27].

Our work raises question about the current paradigm for ontologies and URIrefs.
Is the concept of an “ontology” as a collection or container for Semantic Web terms
needed or even useful? An ontology object encourages self consistency but introduces
some limitations as well. Recent work on ontology partitions argues against large,
monolithic ontologies in favor of having many interconnected components. We might
even eliminate namespaces as boundaries. For example, the Dublin Core Element on-
tology has been widely used together with terms from many other semantic web on-
tologies. Another debatable item is the URIref. We use triples to annotate an URIref
that is an identifier of a resource. Multiple RDF graphs from different documents de-
scribing the same URIref can introduce inconsistency. Integrating these definitions may
encounter several questions: (i) are URIrefs good enough for grouping the triples de-
scribing it; (ii) can we ensure that all of the graphs are accessible to consumers; and (ii)
should all be used or should some be rejected as untrustworthy.

References

1. Berners-Lee, T., Hall, W., Hendler, J., Shadbolt, N., Weitzner, D.J.: Creating a science of the
web. Science 313 (2006) 769–771

2. Zou, Y., Finin, T., Ding, L., Chen, H., Pan, R.: Using Semantic web technology in Multi-
Agent systems: a case study in the TAGA Trading agent environment. In: Proceeding of the
5th International Conference on Electronic Commerce. (2003)

3. Franz, T., Staab, S.: Sam: Semantics aware instant messaging for the networked semantic
desktop. In: Proceedings of the ISWC 2005 Workshop on The Semantic Desktop - Next
Generation Information Management and Collaboration Infrastructure. (2005)

4. Visser, U., Stuckenschmidt, H., Schuster, G., Vogele, T.: Ontologies for geographic informa-
tion processing. Computers and Geoscience 28 (2002) 103–117

preprint preprint

46

5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284 (2001)
35–43

6. Eberhart, A.: Survey of rdf data on the web. Technical report, International University in
Germany (2002)

7. Patel, C., Supekar, K., Lee, Y., Park, E.K.: OntoKhoj: a semantic web portal for ontology
searching, ranking and classification. In: WIDM’03. (2003)

8. Dean, M., Barber, K.: Daml crawler. http://www.daml.org/crawler/ (August 2006) (2002)
9. DAML: The DAML ontology library. http://www.daml.org/ontologies/ (August 2006)

(2004)
10. Pitkow, J.E.: Summary of www characterizations. Computer Networks 30 (1998)
11. Lawrence, S., Giles, C.L.: Accessibility of information on the web. Nature 400 (1999)
12. Gil, R., Garca, R., Delgado, J.: Measuring the semantic web. SIGSEMIS Bulletin 1 (2004)
13. Hartmann, J., Sure, Y., Giboin, A., Maynard, D., del Carmen Surez-Figueroa, M., Cuel, R.:

Methods for ontology evaluation. Technical report, University of Karlsruhe (2004)
14. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: A theoretical framework for ontol-

ogy evaluation and validation. In: Proc. of the 2nd Italian Semantic Web Workshop. (2005)
15. Lozano-Tello, A., Gomez-Perez, A.: ONTOMETRIC:a method to choose the appropriate

ontology. Journal of Database Management 15 (2003)
16. Welty, C.A., Guarino, N.: Supporting ontological analysis of taxonomic relationships. Data

Knowledge Engineering 39 (2001)
17. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: WWW’05. (2005)
18. Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis, D.: Benchmarking RDF

schemas for the semantic web. In: ISWC’02. (2002)
19. Supekar, K., Patel, C., Lee, Y.: Characterizing quality of knowledge on semantic web. In:

FLAIRS’02. (2002)
20. Alani, H., Brewster, C.: Ontology ranking based on the analysis of concept structures. In:

K-CAP’05. (2005)
21. Yao, H., Orme, A.M., Etzkorn, L.: Cohesion metrics for ontology design and application.

Journal of Computer Science 1 (2005)
22. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: Ontoqa: Metric-based on-

tology quality analysis. In: Proc. of Workshop on Knowledge Acquisition from Distributed,
Autonomous, Semantically Heterogeneous Data and Knowledge Sources. (2006)

23. John C. Paolillo and Elijah Wright: The Challenges of FOAF Characterization. In: Proc. of
the 1st Workshop on Friend of a Friend, Social Networking and the (Semantic) Web. (2004)

24. Grimnes, G.A., Edwards, P., Preece, A.: Learning meta-descriptions of the foaf network. In:
ISWC’04. (2004)

25. Mika, P.: Social Networks and the Semantic Web: An Experiment in Online Social Network
Analysis. In: Proc. of International Conference on Web Intelligence. (2004)

26. Ding, L., Zhou, L., Finin, T., Joshi, A.: How the semantic web is being used:an analysis of
foaf. In: Proceedings of the 38th International Conference on System Sciences. (2005)

27. Ding, L.: Enhancing Semantic Web Data Access. PhD thesis, UMBC (2006)
28. Zhang, Y., Vasconcelos, W., Sleeman, D.: Ontosearch: An ontology search engine. In: Proc.

of 24th Conf. on Innovative Techniques and Applications of Artificial Intelligence. (2004)
29. Lindesay, V.: The schemaweb repository. http://www.schemaweb.info/ (August 2006) (2005)
30. Biddulph, M.: Crawling the semantic web. In: XML Europe. (2004)
31. Apsitis, K., Staab, S., Handschuh, S., Oppermann, H.: Specification of an RDF Crawler.

http://ontobroker.semanticweb.org/rdfcrawl/help/specification.html (March 2006) (2005)
32. Sherman, C.: Metacrawlers and metasearch engines. http://searchenginewatch.com/links/-

article.php/2156241 (March 2006) (2004)
33. Gulli, A., Signorini, A.: The indexable web is more than 11.5 billion pages. In: WWW’05

(poster). (2005)

preprint preprint

47

SweetJess and SweetRules

SweetJess (Semantic WEb Enabling Technlogies for Jess) is a system we developed for Seman-
tic Web rules in Jess in 2001 and 2002 using DAML+OIL. SweetRules was developed in 2003-
2005 as a powerful integrated set of tools for semantic web rules and ontologies, revolving
around the RuleML and OWL.

SweetJess: Inferencing in Situated Courteous RuleML via Translation to and from Jess
Rules

The SweetJess approach made four main contributions. First, it showed how to translate from
rules in the Situated Courteous Logic Programs (SCLP) knowledge representation, syntactically
encoded in RuleML, into Jess rules, and likewise to translate from a broad but restricted case of
Jess rules into SCLP RuleML. SCLP is expressively powerful and features prioritized conflict
handling and procedural attachments. The translation applies to a broad but restricted case in
each direction, and preserves semantic equivalence – i.e., for a given rule base, the same conclu-
sions are entailed. Second, it gave an architecture to perform (a broad case of) SCLP RuleML
inferencing using the Jess rule engine. Third, rather straightforwardly, we have developed a
DAML+OIL ontology for (SCLP) RuleML itself. The resulting syntax for RuleML is called
“DamlRuleML”; the DAML+OIL is simply used as “syntactic sugar” for encoding of RuleML.
Fourth, the translation newly enables bi-directional inter-operability, via RuleML, between Jess
— a “reactive” rule system — and multiple other heterogeneous rule systems, including Prologs
and relational database systems (“derivational” rule systems), for which translation to RuleML
has already been shown and among which there are several existing translation tools (e.g., our
SweetRules system). It thereby moves a discernible step closer to the Semantic Web’s vision of
wide knowledge sharing and integration among intelligent applications, e.g., where rules are al-
ready often deployed for e-business policies and workflow.

SweetRules and SweetDeal

SweetRules is a uniquely powerful integrated set of tools for semantic web rules and ontologies,
revolving around the RuleML (Rule Markup/Modeling Language) emerging standard for seman-
tic web rules, and supporting also the closely related SWRL (Semantic Web Rule Language),
along with the OWL standard for semantic web ontologies, which in turn use XML and, option-
ally, RDF. (SWRL rules are essentially an expressive subset of RuleML rules.) SweetRules sup-
ports the powerful Situated Courteous Logic Programs extension of RuleML, including priori-
tized conflict handling and procedural attachments for actions and tests. SweetRules' capabilities
include semantics-preserving translation and interoperability between a variety of rule and ontol-
ogy languages (including XSB Prolog, Jess production rules, HP Jena-2, and IBM Common-
Rules), highly scaleable backward and forward inferencing, and merging of rulebases/ontologies.

48

Procedural attachments can even be WSDL Web Services. SweetRules' pluggability and compo-
sition capabilities enable new components to be added relatively quickly. Implemented in Java,
SweetRules has a compact codebase (~20K lines of code total for several dozen tools).

49

Working Paper, version of May 2, 2003

SweetJess: Inferencing in Situated Courteous RuleML via

Translation to and from Jess Rules

Benjamin N. Grosof1, Mahesh D. Gandhe2, and Timothy W. Finin3

1 MIT Sloan School of Management,
50 Memorial Drive, Cambridge, MA 02142, USA

bgrosof@mit.edu

http://www.mit.edu/˜bgrosof
2 IBM, Business Integration Solutions

577, Airport Blvd., Suite 800, CA 94410 ,USA
maheshg@us.ibm.com

www.cs.umbc.edu/˜mgandh1
3 Department of Computer Science,

University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore MD 21250 ,USA

finin@cs.umbc.edu

www.cs.umbc.edu/˜finin

Abstract. We describe the innovative design of our prototyped SweetJess tool for RuleML
inferencing. Our first contribution is to give a new, implemented translation from a broad
but restricted case of SCLP RuleML into Jess rules, and an inverse translation from a broad
but further restricted case of Jess rules into SCLP RuleML. SCLP stands for the Situated
Courteous Logic Programs knowledge representation; this is expressively powerful and fea-
tures prioritized conflict handling and procedural attachments. The translation is intended
to preserve semantic equivalence – i.e., for a given rulebase, to entail the same conclusions.
The translation often preserves semantic equivalence; in current work, we are developing
formal guarantees for the equivalence, including necessary expressive restrictions in each
direction. Our second contribution, building upon the translation, is a new, implemented
architecture to perform (a broad case of) SCLP RuleML inferencing using the Jess rule en-
gine. Our approach translates from SCLP RuleML rules into Jess rules, runs the Jess rule
engine to generate conclusions (and actions), and then translates the concluded Jess facts
back into SCLP RuleML. Our third new contribution is to enable bi-directional implemented
inter-operability, via RuleML, between several other heterogeneous rule systems (e.g., XSB
Prolog and IBM CommonRules) and Jess. For example, to our knowledge, this is the first
tool to enable inter-operability between a Prolog and any “production”/”reactive” rule sys-
tem descended from OPS5 heritage. The prototype implementation of SweetJess is publicly
available for Web download.

1 Introduction and Overview

The overall problem we address is how to enable inter-operability between heterogeneous rule
systems (including relational database systems as an important special case), and between hetero-
geneous intelligent applications that make use of such rule systems. Rules are widely deployed today
to represent and automate e-business policies and workflows, for example. Practical advances in
such inter-operability would offer the promise to greatly facilitate program-to-program knowledge
sharing and integration, and thereby to stimulate a global virtuous circle of growing value creation
in e-business. In short, we seek to realize rule-based business intelligence on the Semantic Web.

In this paper, we describe the design of SweetJess, our new system for inter-operability of rules
between RuleML and Jess. RuleML [17] is an emerging industry standard for XML rules that we
(first author) co-lead, being pursued in informal cooperation with the World Wide Web Consortium
(W3C) [22] and the DARPA Agent Markup Language (DAML) Program [4]. Rules indeed are part
of the announced mission of the W3C’s Semantic Web Activity [18]. Jess [11], acronym for “Java

50

Expert System Shell”, is a popular rule system that is free for academic use and whose source code
is relatively easily available.

SweetJess is part of our (first author’s) larger toolset system SWEET, acronym for “Semantic
WEb Enabling Technology”. SWEET also includes SweetRules [10], a system for RuleML inferenc-
ing and translation, and SweetDeal [8] [9] [15], an approach to rule-based contracting that builds
upon SweetRules and RuleML e.g., to represent deals about Web services. Our previous Sweet-
Rules prototype was the first to implement SCLP RuleML inferencing and also was the first to
implement translation of (SCLP) RuleML to and from multiple heterogeneous rule systems.

“SCLP” stands for the Situated Courteous Logic Programs knowledge representation. The
SCLP case of RuleML is expressively powerful. The Courteous feature/extension enables prioritized
conflict handling and (a limited form of) classical negation. The Situated feature/extension enables
procedural attachments for sensing (testing rule antecedents) and effecting (performing actions
triggered by conclusions).

SweetRules enables bi-directional translation from SCLP RuleML to: XSB, a Prolog rule sys-
tem [23]; the IBM CommonRules rule engine, a forward SCLP system [5]; Knowledge Interchange
Format (KIF) [12], an earlier version of the Common Logic [6] emerging industry standard for
knowledge interchange in classical logic; and Smodels, a forward logic-program rule engine. Sweet-
Jess aims to complement and extend SweetRules by providing additional capabilities including
translation to Jess.

The first new contribution of the SweetJess approach is a fundamental mapping. We give a new,
implemented translation from a broad but restricted case of SCLP RuleML into Jess rules, and
an inverse translation from a broad but further restricted case of Jess rules into SCLP RuleML.
The translation is intended to preserve semantic equivalence. Semantic equivalence means that, for
a given rulebase, the same conclusions are entailed, and the same side-effectful actions (triggered
by conclusions) are performed when the rulebase is executed (i.e., when the rules are “run”).
The translation often preserves semantic equivalence; in current work, we are developing formal
guarantees for the equivalence, including necessary expressive restrictions in each direction.

The set of expressive restrictions for the translation from SCLP RuleML into Jess includes
several that are imposed by the expressive limitations of Jess; notably, these include:

1. Datalog, i.e., no logical functions;
2. safeness/range-restrictedness of rule heads, i.e., every logical variable in the head must appear

in (and thus be bound by) the rule body;
3. “all-bound sensors”, i.e., sensor attached procedures require all their arguments to be bound

(fully instantiated, i.e., ground) when the sensor procedure is invoked; and
4. safe negation, i.e., variables in negated body literals must appear in (and thus be bound by)

positive body literals (NB: negation here means negation-as-failure; and
5. dynamically stratifiable negation, i.e., the LP’s model under the Well-Founded Semantics [20]

must not need to assign any literals the truth value undefined.

In addition, there are some other limitations of Jess with regard to negation-as-failure that we are
investigating in current work. Finally, Jess also lacks some naming capabilities (especially, for facts
and rulebases), as compared to (SCLP) RuleML; however, these are less fundamental expressively
than the above restrictions.

The above restrictions (1.), (2.), (4.), and (5.) are often found in rule-based systems — especially
ones that do forward-direction inferencing. Restriction (3.), all-bound sensors, is more unusual and
is practically rather limiting — it restricts a sensor attached procedure when queried to answer
with simply a boolean, as opposed to a set of bindings. Overall, these restrictions underline some
dimensions of the powerful expressive generality of SCLP as a KR. We will discuss the translation’s
expressive restrictions in more detail later.

The second new contribution of the SweetJess approach builds upon the translation. We give a
new, implemented architecture to perform (a broad case of) SCLP RuleML inferencing using the
Jess rule engine. Our approach translates from SCLP RuleML rules into Jess rules, runs the Jess
rule engine to generate conclusions (and actions), and then translates the concluded Jess facts back
into SCLP RuleML.

Translating the Courteous feature of SCLP RuleML, i.e., its prioritized conflict handling and
classical-negation aspects, is a particular hurdle, since Jess essentially lacks the ability to directly

51

express these aspects. (Jess does include a quite limited kind of inferencing-control-agenda prioriti-
zation — “salience” — which is a discouraged mechanism.) Our approach is able to surmount this
hurdle however, by utilizing a Courteous Compiler component. The Courteous Compiler “compiles
away” the courteous aspect of an input rulebase, transforming it into a semantically equivalent
rulebase that does not contain the Courteous expressive features (priorities and mutual exclusion
integrity constraints), but rather that only employs negation-as-failure (NAF). The IBM Common-
Rules library provides a Courteous Compiler, for example.

The third new contribution of the SweetJess approach is to enable bi-directional implemented
inter-operability, via RuleML as an interlingua, between Jess and multiple other heterogeneous
rule systems, including Prologs and relational database systems for which translation to RuleML
has already been shown, and for which there are existing translation tools (e.g., in SweetRules
and our other earlier work [8]). In particular, as we discussed earlier, SweetRules already enables
bi-directional translation from SCLP RuleML to: XSB; Smodels; IBM CommonRules; and KIF.
The overall approach to such translation was first given by us in [8]. The RuleML website lists
additional translation tools as well. For a given rule system such as Jess, the software engineering
effort of specification, design and implementation of translation to multiple other rule systems is
greatly eased by use of a single intermediate interlingua, i.e., the emerging RuleML standard.

Jess is a representative member of one group of currently commercially important (CCI) rule
systems: namely, production rule systems descended from OPS5 [3], which in turn are closely re-
lated to event-condition-action (ECA) rule systems [19]. These systems primarily employ forward
chaining (rather than backward), and their applications heavily rely on their capabilities for pro-
cedural attachments. This group is sometimes called “reactive” for short; often, rules are run in
response to the arrival of knowledge-base updates consisting of facts (or “events”). Another quite
distinct group of CCI rule systems is comprised of Prolog systems [2], together with SQL-type rela-
tional database systems (RDB) [19]. The core of SQL RDB’s — relational algebra and Datalog —
is well-known theoretically to be very closely related to pure Prolog. Systems in this second group
(sometimes called “derivational”) primarily employ backward chaining (rather than forward), i.e.,
query-answering.

The fourth new contribution of the SweetJess approach is a bridging across heterogeneous
families of CCI rule systems. Our translation and tool are each the first, to our knowledge, to
enable inter-operability between a Prolog and any “production”/”reactive” rule system descended
from OPS5 heritage. More generally, our translation may be the first to go for a broad expressive
case between the two groups (production/reactive vs. Prolog/SQL derivational).

The fifth new contribution of our translation effort is to compare the expressive capabilities of
each rule system and its underlying fundamental knowledge representation, and in particular to
bring out several limitations of Jess relative to SCLP RuleML. We discussed the most important
of these above.

In continuing the overall SweetRules approach by laying these new foundations for inter-
operability, the SweetJess approach thereby moves a discernible step closer to the Semantic Web’s
vision of wide knowledge sharing and integration among intelligent applications, e.g., where rules
are already often deployed for e-business policies and workflow, and SQL RDB’s are ubiquitous.

The prototype implementation of SweetJess is and publicly available free on the Web4. It is
implemented in Java and makes use of tools for XML, RDF [16] and RuleML.

The remainder of this paper is organized as follows. Section 2 provides background: we review
RuleML, Situated LP, and Courteous LP. In section 3, we review Jess Rules and begin the analysis
and reformulation that underlies our translation mappings. In section 4, we describe SweetJess’
architecture to perform (a broad case of) SCLP RuleML inferencing using the Jess rule engine.
In section 5, we come to the heart of the matter: we describe how to translate rules from SCLP
RuleML to Jess. In section 6, we describe how to translate back from Jess to SCLP RuleML. In
section 7, we wind up with some discussion, including additional directions for future work.

4 http://daml.umbc.edu/sweetjess

52

2 Background: RuleML, Situated LP, Courteous LP

2.1 RuleML and LP

RuleML [17] is the leading emerging industry standard for XML-based inter-operable rules, i.e.,
Semantic Web rules. It is being developed by a coalition which includes participants from several
dozen institutions, both academic and industrial. We (first author) co-lead it. The specification of
RuleML includes an XML markup syntax, together with a formal semantics based on the knowledge
representation (KR) of Logic Programs (LP)5. In adddition, there already exist early draft specifi-
cations of an abstract syntax, an alternative RDF syntax, and an OWL syntax. RuleML is intended
primarily to support inter-operability among currently commercially important kinds (CCI) of rule
systems. These CCI rule systems fall primarily into four major families today: relational database
management systems (SQL), Prolog, OPS5-heritage production rules, and Event-Condition-Action
(ECA) systems. The RuleML language actually provides a range of options for the fundamental
KR expressiveness to be used in inter-operating between a group of two or more rule systems. For-
mally, RuleML organizes these options into a set of “sub-languages”. Each sub-language provides
a different combination of expressive features / expressive restrictions, and has associated syntax.
The set of sub-languages is thus hierarchical, in that a given sub-language may provide a superset
of (i.e., subsume) the expressiveness of a particular other sub-language.

In the LP literature, the most studied LP expressive class is what we will call “Ordinary” LP
(OLP). OLP extends Horn LP by permitting body literals to be negated; its form of negation is
negation-as-failure (NAF). Courteous LP subsumes OLP. OLP is also sometimes called “normal
logic programs” (or “general [sic] logic programs” as in [1]). OLP is roughly pure Prolog without
built-ins, but not limited to backward direction of inferencing.

Currently defined RuleML sub-languages also include:
1. Datalog Horn LP (no negation, no logical functions)
2. Horn LP (adds logical functions (of non-zero arity); no negation; subsumes Datalog Horn)
3. Situated Courteous LP (adds procedural attachments for sensing/effecting, and prioritized

conflict handling; subsumes OLP and Horn)
and several others that provide combinations of various additional syntactic or expressive fea-
tures/restrictions.

Note that Ordinary LP and Horn LP are “pure-belief” KR’s — i.e., they lack procedural at-
tachments. Most KR theory, generally, treats pure-belief formalisms.

RuleML’s sub-languages differ from the formulation of LP expressive classes in the KR literature
primarily in that RuleML provides a standardized set of mechanisms for syntax and for Webizing
the KR. Besides providing XML6 syntactic schemas, an important aspect of these mechanisms is
to provide additional capabilities for naming, notably to permit predicates, individuals, and logical
functions (“constructors”) to be URI’s, and to permit rule names and rulebase names to be part
of the KR language. These naming capabilities facilitate highly distributed knowledge bases and
inferencing for rules and their use of ontologies and databases — in short, they largely equip rule
KR for the Semantic Web. In particular, permitting a predicate name to be a URI that refers to
an OWL class or property enables RuleML rules to be “on top of” OWL ontologies (e.g., see [9]
for the first detailed application scenario that used this capability).

RuleML has been evolving since its first version XML DTD’s (V0.7) were released in early 2001.
The current version (V0.8) includes additional extensions in expressive and syntactic features, and
a few moderate revisions in the syntax. Our SweetJess design and implementation effort was started
while V0.8 was still in development, and thus used the same version of the SCLP RuleML XML
DTD as the first (still current) version of SweetRules [10]. This DTD (known as “SCLP dtd-v13”)
differs in a few minor ways with RuleML V0.8. In current work, we are updating the implementation
to achieve full compliance with the RuleML V0.8 SCLP DTD7.

The current SweetJess translation mappings and implementation incorporates all the features
of the RuleML V0.8 SCLP DTD with one important exception: the object-oriented argument col-
lections feature (“roli’s”), which provides additional syntactic convenience (rather than increasing
5 see [1] for a helpful review of LP KR
6 and early drafts of RDF and OWL
7 http://www.ruleml.org/dtd/0.8/ruleml-sclp-monolith.dtd

53

fundamental expressive power from a logical KR standpoint). The collection of arguments in a log-
ical atom is thus, for now, simply an ordered tuple (in the current SweetJess translation mappings
and implementation). Such an atom when ground is called an “ordered fact” in Jess. In current
work, we are designing an extension of the SweetJess translation mappings and implementation to
support the object-oriented argument collections feature as well.

Next, we give examples of a Fact and a Rule in RuleML V0.8 syntax.

Example 1. Premium Customer Fact, in RuleML A RuleML fact (“fact” element in the XML
syntax) expresses a ground atom. It is a kind of statement. E.g.:
/* Fact: ‘‘Allan is a premium customer.’’ */

premiumCustomer(Allan)

In RuleML syntax:
<fact>

<_head>

<atom>

<_opr>

<rel>premiumCustomer</rel>

</_opr>

<ind>Allan</ind>

</atom>

</_head>

</fact>

Example 2. Discounting Rule, in RuleML A RuleML implication rule (“imp” element in the
XML syntax) expresses an if-then rule (a.k.a. a “clause” in the LP KR literature). It is a kind of
statement. An implication rule is a pure-belief rule that does not directly specify any procedural
attachments for sensing or effecting. E.g.,
/* Rule: ‘‘If a customer is a premium customer then give him a 10% discount.’’

if premiumCustomer(?customer)

then giveDiscount(percent10, ?customer)

For ease of human-readability, in this paper we often give our LP and RuleML examples (e.g.,
the ones above) in the Prolog-like “SCLPfile” syntax of IBM CommonRules V3.0 [5], which maps
straightforwardly to RuleML. “;” ends a rule statement. The prefix “?” indicates a logical variable.
“/* . . . */” encloses a comment. “//” prefixes a comment line. “< . . . >” encloses a rule label
(name). Rule labels identify rules for editing and prioritized conflict handling, for example to
facilitate the modular modification of contract provisions.

In RuleML syntax:
<imp>

<_head>

<atom>

<_opr>

<rel>giveDiscount</rel>

</_opr>

<ind>percent10</ind>

<var>Customer</var>

</atom>

</_head>

<_body>

<atom>

<_opr>

<rel>premiumCustomer</rel>

</_opr>

<var>customer</var>

</atom>

</_body>

</imp>

54

For sake of brevity, especially in human authoring and reading, the XML syntax for RuleML
uses terse/abbreviated names for the elements (and attributes). “rel” means relation, i.e., predicate.
“ind” means individual (object constant). “var” means logical variable. “body” and “head” mean
the antecedent (a.k.a. “if” part) and the consequent (a.k.a. “then” part) of a rule, respectively.
“opr” stands for relational operator.

Note that a fact is similar syntactically to an (implication) rule that lacks a body. Conceptually,
an empty body is viewed as logically True, as is usual in LP and classical logic.

Terminology: From a LP KR viewpoint, a fact is just a special case of a rule. A RuleML rulebase
consisting of implication and fact statements is thus often simply called a “rulebase” or “ruleset”.
More generally, however, the Situated and Courteous features of SCLP extend the LP KR with
three additional kinds of statements: sensor, effector, and mutex; we will be discussing those in
more detail later. A collection of such SCLP statements (all five kinds) constitutes a RuleML
rulebase in the more general sense.

2.2 Situated Logic Programs

The Situated extension of (Courteous or Ordinary) Logic Programs allows actions and queries to
be performed by procedural attachments. SLP uses effector and sensor statements to specify these,
as in the following example.

Example 3. Order Cancellation with Notification Action
/* rule: should notify customer if order cancellation request was received in time to be

accepted */

<rule_526> if deadlineToCancel(order4215, ?Day)

and receivedBefore(cancelRequest4216, ?Day)

then shouldInformCustomer(cancelRequest4216, accepted);

/* effector statement: associated with the predicate shouldInformCustomer, the ack method

performs a notification action */

Effector: shouldInformCustomer /* the predicate */

Class: orderMgmt.Request.mods

Method: ack

Path: ‘‘edu.cs.umbc.SLP.examples.orderMgmt.aprocs’’;

/* sensor statement: associated with the predicate receivedBefore, the earlierReceiptDate

method queries an external order management system */

Sensor: receivedBefore /* the predicate */

Class: orderMgmt.Request

Method: earlierReceiptDate

Path: ‘‘edu.cs.umbc.SLP.examples.orderMgmt.aprocs’’;

BindingRequirement: (BOUND,BOUND)

The effector statements in a SLP each associate a pure-belief predicate, e.g., shouldInform-
Customer, with an external attached procedure, e.g., orderMgmt.request.mods.ack (here, a Java
method). During rule inferencing (more precisely, during rule execution), when a conclusion is
drawn about the predicate, e.g.,“shouldInformCustomer(cancelRequest4216, accepted)” if the rule
above was fired successfully, then the external procedure is invoked as a side-effectful action, e.g.,
the method “ack” is called with its parameters instantiated to “(request1049, accepted)”. “Exter-
nal” here means external to the inferencing engine itself. An (external) attached procedure is also
called an “aproc” for short.

The sensor statements in a SLP each associate a pure-belief predicate, e.g., receivedBefore, with
an external attached procedure, e.g., orderMgmt.request.earlierReceiptDate (again, here the aproc
is a Java method). During rule inferencing/execution, when a rule antecedent condition (i.e., a
literal in the rule’s “if” part) is tested, e.g., “receivedBefore(cancelRequest4216,?Day)” in the rule
above, then the external procedure is queried to provide information about that condition’s truth.
More precisely, the aproc is queried for its answer bindings since the condition may contain logical
variables. A sensor aproc may require that some or all of its arguments must be bound (i.e., fully
instantiated) at the time that aproc is invoked. A sensor statement thus includes a binding pattern
that specifies such requirements. Such binding requirements are quite common in practice.

For example, consider an external procedure myCompany.BluePages.getPhoneNumber, pro-
vided by a company phone directory application, that has two arguments, where the first is a

55

person name and the second is a phone number. It has an associated binding pattern that requires
the first argument to be bound but permits the second argument to be unbound. When invoked
with the first argument bound to “Fred.Green” and the second argument a free variable (“?X”), it
returns the binding “617-555-9876” for that variable. In the example above, the sensor aproc order-
Mgmt.Request.earlierReceiptDate requires both of its arguments to be bound when it is invoked.
Some sensor statements, e.g., for the predicate lessThanOrEqual, correspond to what in Prolog
(or many other commercial rule systems) are “built-ins”, utility procedures provided as a standard
package with the rule system rather than provided by a particular individual user/application.

Terminology: a predicate which has one or more associated sensor (effector) statements is called
a “sensor predicate” (“effector predicate”). A literal in a sensor (effector) predicate is called a “sen-
sor literal” (“effector literal”). Overall, we call the process of drawing conclusions and performing
related effector and sensor invocations in SLP: “situated inferencing”.

Sensing about a given predicate p occurs in addition to any facts derivable from rules (or facts)
whose heads are p atoms. Also, a given predicate p may appear in multiple sensor statements,
i.e., p may have multiple sensor aproc’s. The results from querying all of these sensor aproc’s are
combined (i.e., union’d) when a rules body’s sensor literal in p is tested.

Likewise, a given predicate p may appear in multiple effector statements, i.e., p may have
multiple effector aproc’s. When a conclusion is drawn about p, each of these effector aproc’s is
invoked.

2.3 Courteous Logic Programs: Review

Courteous Logic Programs (CLP) is an expressive super-class of Ordinary Logic Programs (OLP).
The Courteous expressive extension enables prioritized conflict handling and also a limited form
of classical negation. Next, we give an example of a CLP, having 2 rules, 1 fact, and 1 mutex.

Example 4. Prioritized Discounting Rules
/* if the Customer has a Loyal Spending History then give him a 5% Discount */

<steadySpender>
IF shopper(?Cust) and spendingHistory(?Cust, loyal)

THEN giveDiscount(percent5, ?Cust);

/* if the Customer was Slow to Pay last year then give him a 0% (NO) Discount */

<slowPayer>
IF slowToPay(?Cust, last1year)

THEN giveDiscount(percent0, ?Cust);

/* prioritization fact: SlowPayer is higher priority than SteadySpender */

overrides(slowPayer, steadySpender);

/* the amount of the Discount given to a customer is Unique */

MUTEX giveDiscount(?X, ?Cust) and giveDiscount(?Y, ?Cust)

GIVEN notEquals(?X, ?Y) ;

Each rule has an optional rule label. This is used as a handle for specifying prioritization
information. Each label is a logical term, e.g., an individual constant. The “overrides” predicate
is used to specify prioritization. “overrides(lab1,lab2)” means that any rule having label “lab1” is
higher priority than any other rule having label “lab2”. “overrides” is syntactically reserved, but
otherwise is treated as an ordinary predicate. In particular, “overrides” can itself be the subject of
inferencing. The scope of what is conflict is specified by “mutex” statements. A mutex specifies a
(conditional) pair-wise mutual exclusion between two literals; these are called the “opposer” literals
of the mutex. The mutex statement also includes a condition, called its “given” part. The mutex
given part is similar to the body of a rule; it may be empty (i.e., True). E.g., the mutex above
specifies that it is a contradiction to conclude two different values of the percentage discount for the
same customer; i.e., giveDiscount is a (partial-)functional predicate. The semantics of Courteous
LP enforces consistency of the conclusions wrt each mutex.

Any literal may be classically negated; however, (C)LP as a KR only supports a quite limited
form of classical negation (a.k.a. “strong” negation). There is an implicit mutex between p and
classical-negation-of-p, for each p, where p is a predicate, ground atom, or atom. These implicit
mutex’s are called “classical-negation” mutex’s.

56

The semantics of Courteous LP ensures overall consistency of the conclusion set, including
consistency between the two concepts of negation (classical negation of p entails NAF of p, but
not vice versa).

Combining Courteous + Situated → SCLP: The Courteous expressive extension can be
combined with the Situated expressive extension, to form Situated Courteous LP. Currently in the
theory of Situated Courteous LP, however, there is an expressive restriction on this combination:
the sensor predicates must be conflict-free. More precisely, the restriction on the SCLP rulebase is
that: no mutex opposer literal may be a sensor literal. This includes the implicit classical-negation
mutex’s, thus no sensor literal may be classically-negated. We call this restriction “conflict-free
sensing” or “monotonic sensor predicates”, for short. In current work, we are generalizing the
theory of SCLP to remove this restriction.

3 Jess Rules: Overview, Analysis, and Reformulation

3.1 Jess Facts

Conceptually, what Jess calls a “fact” is very similar to the concept of a fact in RuleML; it
expresses a ground atom. Jess provides some machinery for defining facts and acquiring them from
surrounding Java context, with which we will not need to concern ourselves in this paper. We will
concern ourselves simply with the basic concept of a Jess fact — specifically, what Jess calls an
“ordered” fact, i.e., one where the fact’s arguments constitute an ordered tuple. Jess also provides
as a syntactic enhancement the concept of an “unordered” fact, which uses slot names (rather than
sequence) to define arguments within a fact (or atomic pattern); this is quite similar to the object-
oriented argument collections feature of RuleML V0.8, which we mentioned earlier. The current
SweetJess translation mappings and implementation just deal with Jess “ordered” facts, however.

Jess uses a Lisp-like syntax, generally. A Jess fact statement has the following kind of form (we
can view this roughly as a generic template):

(assert (predicateName constant1 constant2 ...constantN))
The statement begins with the ‘‘assert” keyword. This is followed by an expression syntactically
similar to an LP ground atom: a predicate followed by an ordered collection of individual constants.
Different predicates have different arities; we indicated this in the form above by writing “N” as
the arity. Actually, in Jess, “assert” is a system procedure (what Jess calls a “function”); when
executed it puts the fact into the currently active stored knowledge base of the Jess inferencing
engine. Note that, in the tradition of OPS5-heritage production rule systems, Jess does not con-
ceptually view a Jess fact as a special case of a Jess rule. However, in our translation mapping, we
will essentially view a Jess fact as a special case of a LP rule, from the viewpoint of KR theory.

Jess lacks the semantic equivalent of logical functions, i.e., constructors, that have non-zero
arity. It thus also lacks the semantic equivalent of complex terms formed using constructors. This
is known in LP and classical logic KR as the Datalog restriction. The closest thing in Jess to a
non-zero-arity constructor is a JessMethod procedure (see next sub-section), but that is always
evaluated on its arguments; the semantics of a non-zero-arity constructor, however, essentially
correspond to not evaluating it.

3.2 Jess Rules

A Jess rule has the following kind of syntactic form (we can view this very roughly as a generic
template):

(defrule ruleName
(predicate1 constant1 ?boundVariable1)
(test (jMethod1 constant2 ?boundVariable1))
=>
(jMethod2 (symbol3 ?boundVariable1)))

A Jess rule definition begins with the “defrule” keyword followed by a rule name, and has
two further parts, an “if” part on its left hand side (LHS) and a “then” part on its right hand side
(RHS), separated by the “=>” symbol which roughly means implication. The LHS of a Jess rule
is a “pattern” in Jess terminology. A basic “pattern” matches facts and corresponds to an atom in

57

a LP rule body. E.g., the second line in the example form above is a basic pattern. This atom may
include logical variables, not just individual constants, as arguments. More complex patterns can
be formed in several ways. The LHS may consist of a (top-level) list of basic patterns; these are
interpreted (implicitly) as a conjunction.

The basic form of a Jess rule’s RHS is an “action” in Jess terminology. An action is simply
a call to one of Jess’ Java procedures. We will call these procedures “JessMethods”. (Jess calls
them “functions”, but we wish to reserve “function” for logical functions cf. LP and classical logic
KR terminology.) Syntactically, a JessMethod call is simply a Lisp-like list whose first member
is the name of a JessMethod, followed by arguments. Each such argument may be a constant,
logical variable, or another JessMethod procedure call expression. E.g., the last line in the template
example above is an action. “Jess comes with a large number of built-in [JessMethods] that do
everything from math, program control and string manipulations, to giving you access to Java
APIs.”, says the User Manual8. In addition, a user may define their own additional JessMethods,
which are essentially general Java procedures (methods); in practice, this capability is often used
heavily. In general, an action may essentially arbitrarily modify program state, and is a way to do
pretty much anything you can do in Java.

From the standpoint of KR and for designing our translation mappings, however, one Jess-
Method is particularly germane: “assert”. A common kind of action in Jess rules is to assert a
fact. In this case, the Jess rule RHS corresponds to the head atom of a (pure-belief) implication
rule in LP KR, and thus in RuleML. When the Jess rule inferencing engine runs, if the rule LHS
is satisfied (“matches” in Jess terminology), i.e., if the rule fires (with variable bindings supplied
as in the usual manner for rules), then this RHS fact is added to the working fact set portion of
Jess’ knowledge base. From the standpoint of LP KR, this corresponds to drawing a conclusion.
More generally, the RHS may consist of a (top-level) list of actions. If these are assert’s, the list
is interpreted (implicitly) as a conjunction of its member actions.

The result of the RHS when a rule fires thus may be either (1) to draw a conclusion fact (or
several facts), or (2) to perform some (general) procedural action(s) that may be — and typically,
are – side-effectful. From the standpoint of Situated LP KR, expressively, case (2) corresponds
essentially to generating an effector call to a JessMethod. (A complex RHS can be rewritten as a
call to a single JessMethod.)

In addition to basic patterns that correspond to LP atoms, there is one other fundamental
kind of (pattern) expression can appear in the LHS of a Jess rule: a “TEST Conditional Element”
in Jess terminology, called “TestCE” for short.9 10 A TestCE is constructed syntactically using
the reserved keyword “test” followed by a JessMethod call expression (as in the third line of the
template example above). When the rule runs, the TestCE tests whether that JessMethod call
expression (when supplied with variable bindings by matching the rest of the LHS) evaluates to
True (vs. False). From the standpoint of Situated LP KR, this essentially corresponds to a sensor
call. When the JessMethod call is invoked, all the arguments of the JessMethod must be fully
bound. This is significantly less (expressively) general than the concept of a sensor call in Situated
LP, where some or all of the arguments may be (or contain) free variables. We call this the all-bound
sensors expressive restriction.

Jess also has explicit logical connectives. The first is “not”, which is negation-as-failure. “(not
BP), where BP is a basic pattern, is similar to a negation-as-failure literal in LP. More complex
patterns can be built up by explicit use of logical connectives; these include not, and, or, exists,
and can be nested. This provides enhanced expressiveness in a direction very similar to (but
somewhat less general than) “Lloyd-Topor” LP. “Lloyd-Topor” LP is the extension of OLP to
use the Lloyd-Topor transformation [13]. The Lloyd-Topor transformation does not increase the
fundamental expressiveness of OLP, however; it reduces its more expressive version of LP into OLP.
In that sense, it can be viewed as syntactic sugar.

8 Jess V6.1, section 2.2
9 In addition, Jess permits “predicate constraints” and “return value constraints” to be associated with

LHS variables, but these do not provide any extra essential expressiveness; they are reducible to TestCE’s
plus the other permitted LHS pattern constructs.

10 Note that a LHS rule pattern may not contain a top-level JessMethod appearance, only test.

58

Jess requires that all logical variables appearing in the RHS be bound by matching in the LHS.
I.e., all RHS variables must appear in the LHS. This is known in LP and classical logic KR as
range-restrictedness and as the safe-head expressive restriction. Jess also requires that: all logical
variables appearing in a basic pattern (or more complex expression) that is negated (by “not”),
must be bound by matching (on non-negated patterns) in the rest of the LHS. 11 This is known in
LP and classical logic KR as the safe negation expressive restriction. Safe-head and safe-negation
are frequent restrictions in practical rule-based inferencing systems, and are especially common in
forward-direction inferencing systems.

Jess Rule Engine: Above, we have described a Jess rule and a Jess fact, taken one a time.
Overall, the KR semantics of a set of Jess rules and facts must be related to what the Jess engine
does — what conclusions are drawn and what procedural actions are performed — not just to what
is the conceptual intention of a rule or fact. From a KR viewpoint, the Jess engine is similar to the
engines of several other OPS5-heritage production rule systems. It uses the Rete (Latin for “net”)
algorithm [7] for efficiency in “pattern” matching, especially to handle updates to its working set
of facts.

In current work, we are developing more formal theory to characterize the production-rule Rete
engine algorithm in terms of the LP KR.

4 SweetJess’ Overall Architecture for Inferencing and Translation

Fig. 1. SweetJess Architecture for RuleML Inferencing via Jess

The bi-directional translation between RuleML and Jess has several potential uses, as discussed
in section 1. By way of motivation for the details in the rest of this paper, however, we largely
11 Jess also allows local existentially-quantified variables within a negated expression, but this is expressively

inessential.

59

focus on one particular use: to perform RuleML inferencing via Jess. Figure 1 shows SweetJess’
architecture for this. By “RuleML inferencing”, we mean (situated) inferencing from a premise
RuleML rulebase (“Knowledge Base of rules and facts” in the Figure) to derive RuleML conclusions
and related procedural actions that are triggered from those conclusions via procedural attachments
(“effectors” in Situated LP, described in section 2.2). By “via Jess”, we mean that Jess is used as
an engine to “run” the rules.

To perform such inferencing, SweetJess first translates a premise RuleML rulebase into a set of
Jess rules and facts (and JessMethod definitions). This transformation is called trans[RJ]. Infer-
encing is then performed using Jess’ rule inference engine, i.e., the rules are “run”. This generates
a set of derived conclusions (facts) in the Jess representation. Then these facts are transformed by
a SweetJess translator component into a set of RuleML facts. This inverse direction transformation
is called trans[JR]. The result is a set of RuleML conclusion facts entailed by the original RuleML
premise rulebase.

When the rules are run in the Jess engine, a set of actions, triggered by conclusions, is also
performed. These actions are invocations of attached procedures, i.e., side-effectful calls to Java
methods. These actions are those sanctioned by the Situated (“effecting”) aspect of the semantics of
the premise RuleML rulebase. The transformations trans[RJ] and trans[JR] impose some expressive
restrictions on their input, which we will describe later. For the results of inferencing, only facts
need be translated via trans[JR] from Jess to RuleML. Our trans[JR] translation, more generally,
actually handles (as input) Jess rules too, not just Jess facts. The current implementation of
trans[JR], however, restricts these input Jess rules to be pure-belief rules, i.e., without JessMethods
(other than assert), and to be in similar syntactic form to what trans[RJ] produces. In current
work, we have been extending the design of trans[JR] to relax these restrictions.

5 Transforming RuleML To Jess: trans[RJ]

There are several major challenging aspects of designing the translation mappings between RuleML
and Jess. One aspect is to map conceptually between the terminologies and, more deeply, the
concepts of the two different rule languages. We described much of that conceptual mapping earlier
in sections 3 and 4. A second aspect is to handle procedural attachments for tests/sensing and
actions/effecting. A third aspect is to handle prioritized conflict handling. A fourth aspect is to
identify the appropriate expressive restrictions in doing all of the above.

Next, we describe in more detail the various aspects of trans[RJ]. The topics of the following sub-
sections are sequenced roughly in the sequence of increasing expressiveness: from facts to Horn LP
to OLP to Situated OLP to Situated Courteous LP. As we go, we sometimes need to distinguish the
translation mapping (which is at the level of design) from the current implementation of SweetJess.

5.1 Overall Input and Output

The transformation trans[RJ] takes as input a RuleML rulebase — an XML document which we
will call a .rml file. The output of this transformation is a Jess knowledge base — i.e., a .jess batch
file. This batch file contains facts and rules which can be directly fed to a Jess Rete engine. The
batch file begins with the Jess system command “(reset)”, which when executed clears out the
knowledge base and resets the engine. The batch file ends with the Jess system command “(run)”,
which when executed starts up inferencing. The current version of Jess is V6.1. The current version
of RuleML is V0.8. As we discussed earlier in section 1, the current SweetJess implementation still
uses a slightly earlier version of the XML DTD for SCLP RuleML.

5.2 Fact

A basic RuleML fact — an atom whose arguments are an ordered tuple of individuals and/or
variables — translates straightforwardly into a Jess fact.

Example 5. Premium Customer Fact, in Jess: The equivalent Jess fact corresponding to the
RuleML fact in Example 1 is as follows:

60

(assert (premiumCustomer Allan))

URI constant names feature: An important Webizing feature of RuleML is “URI constant
names”: predicate or individual (or other) constant names can be be URI’s. A very basic way to
translate these in trans[RJ] is simply to treat them as strings; however, then they are not recognized
as being URI’s by Jess. Translating them round-trip from RuleML to Jess back to RuleML in such
a way as to preserve the ability to recognize URI-ness upon the return to RuleML, is relatively
straightforward to support in trans[RJ] and trans[JR], e.g., via a prefixing/encoding convention.
Our translation mapping design thus includes URI constant names, but the current implementation
does not yet support this feature.

Rule naming issues: In RuleML, a fact has an optional rule label (name). A fact in Jess has a
unique Fact-Id which is generated by the system upon loading, and is only accessible to the system
rather than being explicit in its Jess representation. The RuleML fact’s rule label, if present, is thus
lost by the transformation. Thus formally, there is an expressive restriction on the transformation:
“no fact labels”. (An alternative design to relax this restriction would be to translate a RuleML
fact into a Jess rule that has a trivially true body, then the rule label could be preserved. But this
would probably have some other disadvantages, e.g., less efficiency.)

Object-oriented argument collections: The current design of the translation mapping also does
not yet support the object-oriented argument collections feature of RuleML V0.8. That recently-
added feature, as yet experimental in status, provides syntactic and conceptual convenience but
does not add fundamental expressiveness from a KR standpoint. We will call this restriction the
“tuple-arguments” expressive restriction.

Expressive restrictions imposed on the rulebase: Datalog, no fact labels, tuple-arguments.
Expressive features enabled for rulebase: URI constant names.

5.3 Horn Rule

A RuleML Horn LP implication rule (i.e., imp statement) is translated into a Jess rule whose LHS
corresponds to the RuleML body, and whose RHS corresponds to the RuleML head. Each RuleML
body atom is translated into a corresponding basic pattern. The RuleML head atom is translated
into an assert of the corresponding basic pattern. The RuleML rule label, if present, is translated
into the Jess rule name, else a new rule name is automatically generated.

Example 6. Discount Rule, in Jess After transforming the RuleML rule given in Example 2
(sub-section 2.1), the corresponding Jess rule is:
(defrule discountRule

(premiumCustomer ?customer)

=>

(assert (giveDiscount percent10 ?customer)))

A further subtlety arises when translating rulebases that contain sensor statements. The sensor
statements modify how a rule mentioning a sensor predicate is translated so as also to generate
TestCE patterns in place of basic patterns; see sub-section 5.6 below for details.

Naming Issues: A RuleML rule label (name) is optional and need not be unique. Jess requires a
name for every rule, w hich moreover must be unique (if not, the last-loaded with that name blows
away any previously-loaded rule with the same name). For the time being, we thus expressively
restrict the input RuleML rules’ labels not to coincide with each other. We call this the unique rule
labels expressive restriction.

Expressive restrictions imposed on the rulebase: unique rule labels, safe head. Note also that the
Datalog restriction applies to the LP rule labels, thus each rule label must be simply an individual
constant.

Expressive features enabled for the rulebase: Horn LP.

5.4 Lloyd-Topor And-Or (LTAO) Expressiveness

The “Lloyd-Topor And-Or (LTAO)” permits: (1) conjunction (of literals) to appear in a rule
head; and (2) disjunction to appear in a rule body, even nested with conjunction to form AND-
OR expressions formed from literals. This is a portion of the Lloyd-Topor transformation: a rule

61

a ∧ b ← c can be rewritten as two rules a ← c and b ← c; and a rule a ← (b ∨ c) can be rewritten
as two rules a ← b and a ← c.

trans[RJ] supports the LTAO expressive feature. LTAO is convenient but expressively inessen-
tial. The SCLP RuleML V0.8 sub-language includes LTAO; many practical rule-based systems
support it. LTAO can be added (inessentially) to Horn LP or any of its expressive super-classes
(e.g., OLP).

An advantage of this LTAO feature is conciseness and naturalness in authoring of rules. The
LTAO feature is straightforward to implement.

Expressive features enabled for the rulebase: Lloyd-Topor And-Or (LTAO).

5.5 Negation-as-Failure (NAF)

Negation-as-failure (NAF) in OLP and SCLP RuleML is translated into Jess negation (“not”),
which also is NAF.

NAF in OLP (and thus in SCLP), and in rule systems generally, is somewhat tricky in the
fully general case, both to define semantically and to implement. As is well-known in the OLP
literature, NAF can cause semantic trouble by interacting with cyclic dependencies (“recursion”)
among rules. A full discussion of the subtleties of NAF is beyond the scope/space of this paper.
But we do impose the following restriction: dynamically stratifiable negation, i.e., the (O)LP’s
model under the Well-Founded Semantics [20] must not need to assign any literals the truth value
undefined. (Note that NAF-free is a special case of dynamically stratifiable.)

In addition, there are some other limitations of Jess with regard to negation-as-failure that we
are investigating in current work.

Expressive restrictions imposed on the rulebase: safe negation, dynamically stratifiable negation.
Expressive features enabled for the rulebase: Negation-As-Failure (NAF), thus OLP.

5.6 Situated LP Procedural Attachments for Sensing and Effecting

Next, we describe how sensor and effector statements, in the Situated feature of RuleML, are
translated.

An effector statement associating a predicate p with an attached procedure q, is translated into
two Jess statements. (1) The first is a Jess rule whose LHS is an open atom in the predicate p and
whose RHS is a JessMethod that invokes the aproc q. Here, “Open” atom means that all of the
atom’s arguments are (free) logical variables. (2) The second is a JessMethod definition statement
(using the deffunction keyword/command), that defines a a new “user-defined” JessMethod that
corresponds to the effector aproc q. There are some other relatively straightforward mechanics of
how to pass the path, classname, and methodname of a (sensor or effector) aproc to Jess when
defining the corresponding JessMethod; some of these details are in evidence in the example below.
There are a few different possible lower-level design choices for exactly how to do this. Below, we
illustrate and describe how it is done in the current implementation.

Example 7. Notification Effector: The effector statement from Example 3 (sub-section 2.2) is
translated into the following Jess rule. (Also — not shown here — there is a JessMethod definition
statement for the effector aproc ack.)
(defrule effect_shouldInformCustomer_1

(shouldInformCustomer ?orderModificationRequest ?status)

=>

(effector ack orderMgmt.Request.mods

(create$?orderModificationRequest ?status)))

The “effector” JessMethod in the Jess rule above is actually a generic effector procedure
(one for the whole rulebase) that takes the particular effector aproc’s methodname, classname,
and effector-call argument list as its input parameters. This is a rather elegant low-level design
approach that exploits the power of Java in Jess. This generic effector procedure also has a corre-
sponding JessMethod definition statement. Similarly, in this approach, there is a generic “sensor”
JessMethod (one for the whole rulebase).

62

A sensor statement associating a predicate p with an attached procedure q, is translated more
indirectly. Its presence in the input results in modifying the translation of every rule r whose body
mentions the predicate p. A sensor atom of the form p(t), within the body of r, is then translated
into the expression

(or BP (p, t) (test MC(q, t)))
rather than into simply the basic pattern BP (p, t) which corresponds directly to the sensor atom.
Here, t stands for a tuple of arguments, and MC(q, t) is a JessMethod call expression to invoke
aproc q on arguments t. That is, a TestCE pattern is also generated to do sensing via the aproc
q, and that TestCE pattern is disjoined (i.e., OR’d) with the basic pattern in p. The result when
the rule LHS is matched/tested is to invoke/query the sensor as well as to match the basic pattern
against the working memory’s set of facts. Also, like with effectors, the translation generates a
JessMethod definition statement for the sensor aproc q.

More generally, there may be multiple (e.g., two) sensor statements for p, each with a corre-
sponding aproc, e.g., q1 and q2. In this case, multiple TestCE patterns are disjoined — one per
aproc — e.g., the sensor atom p(t) is translated into

(or BP (p, t) (test MC(q1, t)) (test MC(q2, t)))

Example 8. Receipt Date Sensor: In Example 3, the rule together with the sensor statement, is
translated into the following Jess rule.
(defrule rule_526

(deadlineToCancel order4215 ?Day)

(or

(receivedBefore cancelRequest4216 ?Day)

(test (sensor earlierReceiptDate orderMgmt.Request

(create$ cancelRequest4216 ?Day))))

=>

(assert (shouldInformCustomer cancelRequest4216 accepted)))

(Also — not shown here — there is a JessMethod definition statement for the sensor aproc
earlierReceiptDate.)

Expressive restrictions imposed on the rulebase: all-bound sensors (recall section 3).
Expressive features enabled for the rulebase: Situated LP (sensors, effectors), thus Situated

OLP.

5.7 Courteous Prioritized Conflict Handling

So far, we have described how to translate for the Situated Ordinary LP (SOLP) expressive class of
RuleML (along with the LTAO and URI constant names features). We call this the SOLP case of
the translation. SCLP RuleML also includes the Courteous expressive feature for prioritized conflict
handling (and limited classical negation), which we overviewed in sub-section 2.3. Jess, however,
does not support anything like the Courteous feature directly; it lacks the ability (directly) to
express mutex’s or the kind of prioritized conflict handling that Courteous LP enables.

Use Courteous Compiler: We have found a means for overcoming this incapacity of Jess. It
is to compose an additional transformation, called the Courteous Compiler, as a first step before
the “basic” SOLP-case translation. As we have shown in previous work [8] [5], the Courteous Com-
piler transforms a (Situated) Courteous LP into a semantically equivalent (Situated) Ordinary LP.
IBM CommonRules and SweetRules make use of a Courteous Compiler component, for example;
CommonRules provides one as part of its toolset. 12 For an input SCLP RuleML rulebase that
contains Courteous expressive features (notably, mutex’s explicit or implicit), we thus refine the
SweetJess architecture accordingly: as a first step in trans[RJ], the input RuleML rulebase (.rml)
is transformed via a Courteous Compiler (CC) component into a different, but semantically equiv-
alent, RuleML rulebase that no longer contains the Courteous features. This post-CC rulebase is
then run through the basic SOLP-case translator for trans[RJ]. The SOLP-case translator handles
SOLP (plus LTAO and URI constant names).

12 The Courteous Compiler step is tractable computationally: worst-case O(n3) but typically more like
O(k ∗ n), where 3 ≤ k ≤ 50, in practical experience to date.

63

Expressive features enabled for the rulebase: Courteous (prioritized conflict handling, limited
classical negation), thus SCLP.

Expressive restrictions imposed on the rulebase:
(1) the post-Courteous-Compiler NAF-related restrictions (dynamic stratifiability)13; and
(2) conflict-free sensing (recall sub-section 2.3).
Note also that the Datalog restriction applies to the mutex’s.

6 Transforming Jess To RuleML: trans[JR]

Next, we describe trans[JR], the translation from Jess to RuleML. In the rest of this section, the
“translation” means trans[JR], unless explicitly indicated otherwise.

The input to trans[JR] is a Jess batch (.jess) file containing facts, rules, and JessMethod def-
initions, that can be directly fed to the Jess Rete engine in its current version (V6.1). Output of
trans[JR] is a RuleML (.rml) file.

To support RuleML inferencing via translation to/from Jess, via our SweetJess architecture, it
suffices simply to translate Jess facts — i.e., the conclusions of inferencing by the Jess rule engine
— to RuleML.

The translation of facts is straightforward. Jess facts are defined in calls to the JessMethod
“assert”. To transform a Jess fact, trans[JR] just strips off the assert to obtain the inner ground-
atom-like expression, and generates a RuleML fact that corresponds to that inner expression. Facts
in Jess each have a unique Fact Id which is generated by the system upon loading or inferencing.
Jess facts do not have an explicit label for identification. In RuleML facts have an optional rule
label. For the time being, we define trans[JR] to simply translate this Jess Fact Id into the RuleML
fact label.

Our translation mapping extends to much more than facts, however. It is relatively straightfor-
ward to invert the OLP case of trans[RJ], i.e., to “round-trip” the results of trans[RJ]; each Jess
rule is translated into a RuleML (implication) rule.

The fundamental expressive class covered by trans[JR] thus includes OLP (with the other OLP-
relevant expressive features and restrictions that we discussed in the last section). The current
prototype implements this case of trans[JR]. However, in the current implementation of trans[JR],
the Situated extension is not supported, i.e., the implementation of trans[JR] does not handle
TestCE’s or (non-assert) actions.

In the larger SweetJess effort, we have been investigating how to extend the fundamental ex-
pressive class covered by this translation trans[JR] from OLP to Situated OLP. Next, we give a
sketch of how.

(1.) For each JessMethod sproc appearing in some TestCE:
(a.) introduce a new predicate spred; and
(b.) generate a sensor statement associating spred with sproc.
Note this sensor statement also essentially defines/declares sproc from RuleML’s viewpoint.

(2.) Likewise, for each JessMethod eproc appearing in some action (expression):
(a.) introduce a new predicate epred; and
(b.) generate an effector statement associating epred with eproc.
(Similarly, this effector statement also essentially defines/declares eproc from RuleML’s viewpoint.)

(3.) Translate a TestCE pattern (sproc t) to a sensor atom spred(t), where t stands for the
arguments.

(4.) Translate an action (eproc t) to an effector atom epred(t), where t stands for the argu-
ments.

7 Conclusions, Discussion and Future Work

For the main Conclusions, see section 1 “Introduction and Overview”, especially the list of novel
contributions we gave there. At core, our effort is not particular to RuleML or Jess, but rather

13 In current work, we are investigating how to characterize syntactic sufficient conditions on the original
(S)CLP to guarantee this restriction is met.

64

between knowledge representations. Its essence is to translate from declarative SCLP to (OPS5-
heritage) production rules, and vice versa. This continues the overall approach and vision we first
gave in [8].

That the translation between RuleML and Jess imposes some expressive restrictions in each
direction is entirely typical when engaged in defining translations between two heterogeneous rule
systems (or any other kind of heterogeneous systems) — the translation handles their expressive
overlap.

Another contribution of our translation effort is to discover and compare the expressive capa-
bilities of each rule system and its underlying fundamental KR. In particular, we discovered and
highlighted some limitations of Jess as compared to SCLP, including about its ability to represent
attached procedures. Jess is less expressively powerful than Situated (Courteous) LP, in that sensor
arguments must be fully bound, and sensors may only return true or false; whereas in SCLP, sensor
arguments may contain variables that are unbound at the time the sensor is called, and sensors may
return sets of bindings (or sets of facts, viewed alternatively). Jess also can make use of Courteous
prioritized conflict handling since Jess does not provide a comparably powerful or clean way to
express prioritized conflict handling. The comparative insights emerging from the translation effort
thus show the potential value of SCLP as an expressive enhancement relative to production rule
systems.

Our current work includes implementation and testing of the translation mapping and the
overall architecture; development of more formal theory/theorems about the semantic equivalencies
including about correctness of the translation and about semantics of negation-as-failure; extending
to object-oriented argument collections; and integration with SweetRules. In this regard, there may
be some additional, relatively minor, expressive restrictions to be added, or other relatively minor
modifications needed, to ensure the correctness of the translation. The version of the translation
design in this paper is penultimate, rather than finalized, in that sense.

References

1. Baral C. and Gelfond M.,“Logic Programming and Knowledge Representation”, J. Logic Programming,
19-20: 73-148

2. Clocksin W.F. and Mellish C.S., Programming in Prolog. Springer-Verlag, 1981
3. T. Cooper and N. Wogrin, Rule-Based Programming with OPS5. Morgan-Kaufmann Pub., 1988
4. DARPA Agent Markup Language Program http://www.daml.org/
5. IBM CommonRules. http://www.alphaworks.ibm.com/
6. Common Logic, a proposed ISO standard. http://cl.tamu.edu/
7. Forgy, Charles L., “Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match

Problem”, Artificial Intelligence 19(1), pp. 17-37, 1982.
8. Grosof B.N., Labrou Y., and Chan H.Y., “A Declarative Approach to Business Rules in Contracts:

Courteous Logic Programs in XML”. Proc. 1st ACM Conf. on Electronic Commerce (EC-99), 1999.
9. Grosof, B.N., Poon, T.C., “Representing Agent Contracts with Exceptions using XML Rules, Ontologies,

and Process Descriptions”. Proc. 12th Intl. Conf. on the World Wide Web (WWW-2003), 2003. Earlier
version in: Proc. Intl. Wksh. on Rule Markup Languages for Business Rules on the Semantic Web, held
at 1st Intl. Semantic Web Conf., 2002.

10. Grosof B.N., “Representing E-Business Rules for Rules for the Semantic Web: Situated Courteous
Logic Programs in RuleML”. Proc. Wksh. on Information Technology and Systems (WITS ’01), 2001.
Extended report version available at author’s website.

11. Jess. http://herzberg.ca.sandia.gov/jess/.
12. Knowledge Interchange Format. http://logic.stanford.edu/kif and http://www.cs.umbc.edu/kif.

Closely related is the new Common Logic effort.
13. John W. Lloyd, Foundations of Logic Programming, Second, Extended edition, Springer, Berlin, 1987.
14. Niemela, I. and Simons, P., Smodels (version 1). http://saturn.hut.fi/html/staff/ilkka.html.
15. Reeves D.M., Wellman M.P. and Grosof B.N., “Automated Negotiation From Declarative Contract

Descriptions”. Computational Intelligence, special issue on Agent Technology for Electronic Commerce,
Nov. 2002. (Revised and extended from 2001 Autonomous Agents conference paper.)

16. Resource Description Format (RDF) from World Wide Web Consortium. http://www.w3.org.
17. Rule Markup Language Initiative. http://www.ruleml.org and http://www.ebusiness.mit.edu/bgrosof/#RuleML.
18. Semantic Web Activity of the World Wide Web Consortium. http://www.w3.org/2001/sw.
19. Ullman J.D. and Widom J., A First Course in Database Systems. Prentice-Hall, 1997.

65

20. Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf, “The Well-Founded Seman-
tics for General Logic Programs,” Journal of the ACM, 38:3, pp. 620-650, July 1991.
http://www.cs.columbia.edu/˜kar/pubsk/wfjacm.ps.

21. Web Services Activity of the World Wide Web Consortium. http://www.w3.org/2002/ws.
22. World Wide Web Consortium. http://www.w3.org.
23. XSB logic programming system. http://xsb.sourceforge.net./ and http://www.sunysb.edu/ sbprolog.
24. XSLT (eXtensible Stylesheet Language Transformations), http://www.w3.org/Style/XSL/.

66

Extending the SweetDeal Approach for E-Procurement using
SweetRules and RuleML

Sumit Bhansali and Benjamin N. Grosof

Massachusetts Institute of Technology,
Sloan School of Management, Cambridge, MA 02139, USA

{bhansali,bgrosof}@mit.edu; http://ebusiness.mit.edu/bgrosof

Abstract. We show the first detailed realistic e-business application scenario that uses and exploits capabilities of the
SweetRules V2.1 toolset for e-contracting using the SweetDeal approach. SweetRules is a uniquely powerful integrated
set of tools for semantic web rules and ontologies. SweetDeal is a rule-based approach to representation of business
contracts that enables software agents to create, evaluate, negotiate and execute contacts with substantial automation
and modularity. The scenario that we implement is of electronic procurement of computers, with request-response
iterated B2B supply-chain management communications using RuleML as content of the contracting
discovery/negotiation messages. In particular, the capabilities newly exploited include: SweetJess or SweetXSB to do
inferencing in addition to the option of SweetCR inferencing, SweetOnto to incorporate/merge-in OWL-DLP
ontologies, and effectors to launch real-world actions. We identify desirable additional aspects of query and message
management to incorporate into RuleML and give the design of experimental extensions to the RuleML schema/model,
motivated by those, that include specifically: fact queries and answers to them. We present first scenario of using SCLP
RuleML for rebates and financing options, in particular exploiting the courteous prioritized conflict handling feature.
We give a new SweetDeal architecture for the business messaging aspect of contracting, in particular exploiting the
situated feature to exchange rulesets, that obviates the need to write new (non-rule-based) agents as in the previous
SweetDeal V1 prototype. We finally analyze how the above techniques, and SweetDeal, RuleML and SweetRules
overall, can combine powerfully with other e-business technologies such as RosettaNet and ebXML.

1 Introduction

In this paper, we describe in detail a practical electronic contracting scenario that uses RuleML[1], the
Situated Courteous Logic Programs (SCLP) knowledge representation [6], and the SweetRules V2.1
semantic web rules toolset [2] together to show how a real-world business application such as electronic
procurement can be supported with semantic web technologies including also OWL [3]. The electronic
procurement application was chosen not only because of its wide applicability in e-business but also
because it allows us to showcase different features of the new SweetRules V2 implementation. Specifically,
we show how powerful features of the new implementation such as importing OWL-DLP ontologies into a
rule-based knowledge base, executing real-world business processes such as sending e-mail from rules,
and inferencing on RuleML rules obtained from ontologies as well as rulebases possibly expressed in
different types of KR. The procurement example allows us to also see how different business
functions/features such as rebates, financing scenarios, payment options, which might be applicable in a
wide variety of business applications, can be expressed using the RuleML KR language.

From our investigation of the electronic procurement scenario, we suggest inclusion of specific features in
future versions of the RuleML KR to support query and message management that would be useful
especially in business applications involving iterated request-response communication, such as e-
contracting applications. Finally, we also explain how our electronic contracting approach based on
RuleML and SweetRules can relate to other e-business technologies such as RosettaNet [4] and ebXML
[5].

67

The paper is organized as follows. In section 2, we provide a brief overview of the technologies – RuleML,
SweetRules, and SweetDeal – that we use in this research. Section 3 provides an overview of our approach
and scenario. Section 4 illustrates the expressive power of RuleML in representing key contract provisions,
specifically those of financial incentives. Section 5 describes the iterated contract construction process in
great detail. Section 6 concludes the paper.

2 Overview of Technologies

We provide below a short description of the different technologies used in this research.

2.1 RuleML

RuleML [1] is the emerging standard for representing semantic web rules. The fundamental KR used in
RuleML is situated courteous logic program or SCLP, which has been demonstrated to be expressively
powerful [6]. The courteous part of SCLP enables prioritized conflict handling, which in turn enables
modularity in specification, modification, merging and updating. The situated part of SCLP enables
attached procedures for “sensing” (i.e. testing rule antecedents) and “effecting” (i.e. performing actions
when certain conclusions are reached).

2.2 SweetRules

SweetRules [2], a uniquely powerful integrated set of tools for semantic web rules and ontologies, is newly
enhanced in V2.1. The new version of SweetRules include capabilities such as first-of-a-kind semantics-
preserving translation and interoperability between a variety of rule and ontology languages (including
XSB Prolog [7], Jess [8] production rules, HP Jena-2 [9], IBM CommonRules [10], and the SWRL [11]
subset of RuleML), highly scaleable backward and forward inferencing, and easy merging of
heterogeneous distributed rulebases/ontologies.

2.3 SweetDeal

SweetDeal [12] is an electronic contracting approach that uses SCLP RuleML to support creation,
evaluation, negotiation, execution and monitoring of formal electronic contracts between agents such as
buyers and sellers. The approach builds on top of the SweetRules toolest to showcase the power of SCLP,
RuleML, and SweetRules, as a design -- and implemented prototype software -- in the specific business
application of electronic contracting.

3 Overview of Approach and Scenario

The extended SweetDeal approach described in this paper consists of three primary pieces: communication
protocol between the contracting agents, contract knowledge bases and agent communication knowledge
bases. We briefly describe these below in the context of our specific scenario of electronic procurement.

3.1 Communication Protocol

In our scenario, the buyer, Acme Corp, is interested in purchasing computers of a particular configuration.
The buyer attempts to establish a procurement contract with the seller, Dell Computers. We assume that
Dell Computers is a preferred vendor of computers for Acme Corp. To establish the terms of the contract,
the buyer and seller agents exchange messages in an iterated fashion.

The protocol of message exchanges is as follows: the buyer first sends an RFP (request for proposal) to the
seller. The seller responds to the RFP with the proposal. Based on specific business criteria, the buyer
chooses to accept or reject the proposal. The buyer may also suggest modifications to the proposal before

68

accepting or rejecting it. The RFP message from the buyer contains specific details about the desired
computer configuration. It also contains any queries to which the seller must provide answers in its
proposal. The proposal message from the seller contains several formal contract fragments which describe
useful business provisions such as rebates, financing options, as well as payment options for the buyer. In
addition to specifying the contractual provisions, the seller also provides answers to the queries posed by
the buyer. Finally, it may pose additional queries for the buyer that the buyer in turn must provide answers
to in the next negotiation message. After the buyer is satisfied with the final contract proposal from the
seller, it generates a purchase order that is sent to the seller. To complete the transaction, the seller delivers
the order and the buyer makes arrangements to pay the seller via the chosen payment option. Any
contingencies in the execution of the order/transaction are handled according to the terms of the contract.

3.2 Contract Knowledge Bases

Contract negotiation messages exchanged between the agents are RuleML knowledge bases that are
executable within SweetRules V2.1 software. Contract knowledge bases contain the following six main
technical components: rules, facts, ontologies including OWL-based ontologies as well as object-oriented
default inheritance ontologies, effectors, f-queries and their answers, and conditional queries. We briefly
describe each of these components below. Since RuleML as an XML-based markup language is fairly
verbose and since the presentation syntax of RuleML has not yet been implemented completely in
SweetRules, we use the IBM CommonRules (CR) V3.3 syntax in all our examples to allow for concise
presentation and easier comprehension. In future, it would be more desirable instead to use the RuleML
presentation syntax. See [16], especially the Rules language description, for the initial version of that
presentation syntax, and see [2], especially its documentation, for its experimental extension to include the
Situated feature and for its (currently, still partial) support in SweetRules.

3.2.1 Rules

RuleML rules express the if-then implications of the contractual fragments and form the bulk of the
contract knowledge base. Each rule has a head and a body. The “head” is the part of the rule after the
“then”, whereas the “body” is the part of the rule that follows “if” and precedes “then”. The example below
shows a simple <rebate> rule: the seller might wish to provide a rebate offer to the buyer in the proposal.
Specifically, the seller might wish to offer a rebate in the amount of $1000 to the buyer if the number of
computers ordered by the buyer is more than 75. Due to current tool limitations of numeric types in
translating CommonRules to RuleML, all numeric constants in the rule examples below are represented
using strings, e.g., “75” is represented as “seventyfive”.

<rebate>
if
 quoteID(?QuoteID) AND quantityOfItemOrdered(?Q) AND

isGreaterThan(?Q, seventyfive)
then
 rebateAmount(?QuoteID, thousand);

3.2.2 Facts

RuleML facts or assertions are rules that have no bodies. The simple examples below show facts that are
specified in the RFP from the buyer to the seller. The quantity of item ordered by the buyer is 80
(computers) and the buyer is located in the state of Florida. (We assume that both buyer and seller are
located in USA).

quantityOfItemOrdered(eighty);
buyerLocationState(florida);

69

3.2.3 Ontologies

Ontologies are vocabularies that express the background knowledge used by the contract rules. They can be
either OWL [15] ontologies or rule-based object-oriented default inheritance ontologies. OWL ontologies
used must be in the Description Logic Programs (DLP) [13] subset of OWL, i.e. in the subset of OWL that
is translatable into LP rules. SweetRules V2.1 software allows for translation from OWL-DLP to RuleML
rules. We show below a simple example of an OWL ontology that is used by the buyer. The ontology
(procurement.owl) has three classes: buyer, seller, and product, and three object properties:
preferredVendorIs, buysProduct, and sellsProduct. The ontology fragment also has some instance data:
computers is a product, Dell sells computers, Acme buys computers, Acme has Dell as a preferred vendor.
Since the ontology is in the DLP subset of OWL, a translation from OWL to RuleML exists and
SweetRules V2.1 software can be used (see command C1 below) to convert the ontology to a rule-based
knowledge base in RuleML.

translate owl clp c:\procurement.owl c:\procurement.clp (C1)

The ontology (procurement.owl) is shown below:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.procurement.org/procurement.owl#"
 xml:base="http://www.procurement.org/procurement.owl">
 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="buyer"/>
 <owl:Class rdf:ID="seller"/>
 <owl:Class rdf:ID="product"/>

 <owl:ObjectProperty rdf:ID="preferredVendorIs">
 <rdfs:domain rdf:resource="#buyer"/>
 <rdfs:range rdf:resource="#seller"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="buysProduct">
 <rdfs:domain rdf:resource="#buyer"/>
 <rdfs:range rdf:resource="#product"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="sellsProduct">
 <rdfs:domain rdf:resource="#seller"/>
 <rdfs:range rdf:resource="#product"/>
 </owl:ObjectProperty>

 <seller rdf:ID="dell">
 <sellsProduct rdf:resource="#computers"/>
 </seller>

 <buyer rdf:ID="acme">
 <preferredVendorIs rdf:resource="#dell"/>
 <buysProduct rdf:resource="#computers"/>
 </buyer>

 <product rdf:ID="computers"/>
</rdf:RDF>

The translation of the ontology to rules is shown below. The translation has been slightly modified for ease
of readability. Each of the predicates below would be prefixed in the original translation with a long

70

namespace URI indicated in the OWL document above. The namespace URI has been removed from all
predicates below.

<emptyLabel> if buysProduct(?X, ?Y) then buyer(?X);
<emptyLabel> if buysProduct(?X, ?Y) then product(?Y);
<emptyLabel> if sellsProduct(?X, ?Y) then seller(?X);
<emptyLabel> if sellsProduct(?X, ?Y) then product(?Y);
<emptyLabel> if preferredVendorIs(?X,?Y) then buyer(?X);
<emptyLabel> if preferredVendorIs(?X, ?Y) then seller(?Y);
<emptyLabel> sellsProduct(dell, computers);
<emptyLabel> preferredVendorIs(acme, dell);
<emptyLabel> buyer(acme);
<emptyLabel> product(computers);
<emptyLabel> Class(product);
<emptyLabel> Class(buyer);
<emptyLabel> Class(seller);
<emptyLabel> seller(dell);
<emptyLabel> buysProduct(acme, computers);

Next we show a simple example of expressing an object-oriented default inheritance ontology using rules.
In the example, BuyWithCredit is a subclass of Buy. Buy assigns the value “invoice” to the paymentMode
property, but BuyWithCredit assigns the value “credit” to the paymentMode property, i.e., BuyWithCredit
overrides the paymentMode property inherited by default from Buy. The courteous feature of SCLP
RuleML is a powerful way to express default inheritance using rules. If only Buy(quoteID) is asserted (i.e.
the buyer asserts that it wants to buy), then the payment mode is assumed to be invoice (by default). If the
buyer specifically asserts BuyWithCredit(quoteID), then the default payment mode is overridden to be
credit instead.

<buyRegular>if Buy(?quoteID) then paymentMode(?quoteID,invoice);
/* BuyWithCredit is a subclass of Buy */
if BuyWithCredit(?quoteID) then Buy(?quoteID);
<buyCredit> if BuyWithCredit(?quoteID)then paymentMode(?quoteID,credit);
overrides(buyCredit, buyRegular);

3.2.4 Effectors

Effectors are a feature of the Situated extension of logic programs. An effector procedure is an attached
procedure that is associated with a particular predicate. This association is specified via an effector
statement that is part of the rulebase. When a conclusion is drawn about the predicate, an action is
triggered; this action is the invocation of the effector procedure, and is side-effect-ful. In general, there may
be multiple such effector statements and procedures in a given rulebase, e.g.., in a given SweetDeal
contract/proposal. Effectors can execute real-world business processes associated with the execution of the
contract. For example, an effector can be used by the buyer to send the purchase order (PO) to the seller
(see <sendPO> rule below). If the vendor proposal has been approved, then the buyer sends the PO to the
sales e-mail address of the vendor. The effector sendPOtoVendor is associated with the Java procedure
emailMessage in the Effector_EmailPO class, whose path is indicated as
com.ibm.commonrules.examples.situated_programming_examples.familymsg.aprocs.
The Java procedure not shown here for brevity handles the e-mail messaging aspect of sending the PO to
the vendor. The arguments to the effector predicate – seller e-mail address, location of the purchase order,
approved proposal identifier – are passed as arguments to the Java procedure.

<sendPO>
if
 approvedVendorProposal(?Vendor, ?ProposalID) AND
 emailSalesAddress(?Vendor, ?SellerAddress) AND locationOfPO(?Location)
then
 sendPOtoVendor(?SellerAddress, ?Location, ?ProposalID);

71

<emptylabel>
 Effector: sendPOtoVendor
 Class: Effector_EmailPO
 Method: emailMessage
 path:
"com.ibm.commonrules.examples.situated_programming_examples.familymsg.aprocs";

3.2.5 Fact-queries or F-queries

The traditional notion of the answer to a query in logic programs (and databases) is: a set of variable-
binding lists. In modeling the exchange of contract proposals and associated dialogue between contracting
parties, however, it is often convenient to model the answer to an inquiry as a set of facts instead.
Accordingly, we have developed the design of f-queries (short for “fact queries”) as a (fairly simple)
experimental extension to RuleML. Note that, unlike the rest of what we describe of the SweetDeal
approach in this paper, this f-queries feature is not yet implemented in SweetRules. RuleML f-queries are
queries which have facts as their answers. They facilitate the iterated development of procurement
contracts. The example below shows a sample f-query. It is an f-query from buyer to seller in which the
buyer requests the seller for the unitPriceOfItem. The answer to the f-query is provided by the seller as a
RuleML fact.

Query Example
<query>
 <_body>
 <fclit cneg="no" fneg="no">
 <_opr>
 <rel>unitPriceOfItem</rel>
 </_opr>
 <var>QuoteID</var>
 <var>Price</var>
 </fclit>
 </_body>
</query>

3.3 Agent Communication Knowledge Bases

In addition to the contract knowledge bases that are shared/exchanged, the agents also have internal
RuleML knowledge bases that contain rules to facilitate agent communication. The effectors feature of
SCLP RuleML allows the agents to execute real-world business processes such as e-mail messaging. This
feature is used by the agents to send the contract rulesets to each other. The actual e-mail messaging
effector procedure is implemented as a Java method that employs the JavaMail API [14]. The
communication process is triggered using the internal agent communication KB and the SweetRules V2.1
software that supports execution of Java methods attached as effectors to specified predicates in the KB. A
simple example follows: the situated rule <sendRFP> allows the buyer to send the RFP ruleset to the sales
e-mail address of the seller. The name of the effector in the situated rule is sendRFPtoComputerSeller. The
effector specification consists of the name of the Java procedure (emailMessage), the Java implementation
class that contains the method (Effector_EmailRFP), and the path to the class
(com.ibm.commonrules.examples.situated_programming_examples.familymsg.aprocs).

The effector is executed when the buyer wants to buy computers and the seller sells computers and is in the
preferred vendor list of the buyer. When the sendRFPtoComputerSeller predicate is concluded, the attached
procedure “emailMessage” is called to execute the required action. The action consists of reading the RFP
from the local file system and sending it via e-mail to the specified e-mail address of the sales department
of the seller. For brevity, the Java code to implement the e-mail messaging is not shown here.

<sendRFP>
if
 wantToBuy(?Buyer, computers) AND seller(?Vendor) AND

72

sell(?Vendor, computers) AND inPreferredVendorList(?Buyer, ?Vendor) AND
emailSalesAddress(?Vendor, ?Address) AND
locationofRFP(?Buyer, computers, ?Location)

then
 sendRFPtoComputerSeller(?Address, ?Location);

<emptylabel>
 Effector: sendRFPtoComputerSeller
 Class: Effector_EmailRFP
 Method: emailMessage
 path:
"com.ibm.commonrules.examples.situated_programming_examples.familymsg.aprocs";

4 Contract Business Provisions using RuleML

In this section, we present a few key contract fragments in the procurement contracting scenario and how
SCLP RuleML can be used to express them. We intend to show how the expressive/declarative power of
RuleML allows for easy addition and modification of key B2B contracting provisions. Specifically, we
focus on expressing commonly used financial incentives such as rebates, discount pricing, and financing
options. These incentives could be specified by the seller in its proposal. For the sake of simplicity and
brevity, in this paper version some of the rules (e.g., about monthly payments in financing options) are
highly specific to the particular scenario, rather than specified in more realistically general form.

4.1 Rebate

For example: the seller wishes to offer a rebate in the amount of $1000 to the buyer if the quantity of item
ordered is greater than 75. This is represented as the <rebate> rule below.

<rebate>
if
 quoteID(?QuoteID) AND quantityOfItemOrdered(?Q) AND

isGreaterThan(?Q, seventyfive)
then
 rebateAmount(?QuoteID, thousand);

4.2 Pricing Options

For example: If the buyer makes the purchase before April 1 then the unit price offered by the seller is
$600; if the purchase is made before April 15, then the unit price offered is $650. This is specified as the
<earlyPurchase> and <latePurchase> rules below. If both these rules apply, i.e., if the purchase was made
before April 1, then precedence is given to the earlyPurchase rule. This precedence is specified using the
courteous prioritization feature of SCLP (and of RuleML): see the overrides fact rule below.

<earlyPurchase>
if
 quoteID(?QuoteID) AND purchaseDate(?QuoteID, ?Date) AND

isLessThan(?Date, oneApr05)
then
 unitPriceOfItem(?QuoteID, sixhundred);

<latePurchase>
if
 quoteID(?QuoteID) AND purchaseDate(?QuoteID, ?Date) AND

isLessThan(?Date, fifteenApr05)
then
 unitPriceOfItem(?QuoteID, sixhundredfifty);

overrides(earlyPurchase, latePurchase);

73

MUTEX
 unitPriceOfItem(?QuoteID, sixhundred) AND

unitPriceOfItem(?QuoteID, sixhundredfifty);

4.3 Financing Option

For example: If the financing is requested for 36 months by the buyer, the unit price of the item is
determined to be $600, and the quantity ordered is 50, then the financing option offered by the seller is such
that the monthly payment is $958 and the total interest paid is $4500 (see the <financing> rule below).

<financing>
if

quoteID(?QuoteID) AND financeForMonths(?QuoteID, thirtysixMonths) AND
unitPriceOfItem(?QuoteID, sixhundred) AND
quantityOfItemOrdered(?QuoteID, fifty)

then
 monthlyPayment(?QuoteID, ninehundredfiftyeight) AND
 totalInterest(?QuoteID, fourthousandfivehundred);

5 Details of Procurement Contract Construction Using RuleML and SweetRules
V2.1

In this section, we describe in detail the specific steps taken in constructing an e-contract between the buyer
and seller using SCLP RuleML and SweetRules V2.1 in our electronic procurement scenario.

As described earlier, the buyer has a solo (or unshared) agent communication knowledge base that can be
used to initiate the action of sending an RFP to a specific seller (in our example – Dell). We call this solo
knowledge base – BSO1. BSO1 has the names of the different sellers, types of products offered by them,
their respective sales e-mail addresses, and whether the sellers are in the preferred vendor list maintained
by the buyer. The location of the RFP (which itself is a rule-based knowledge base) is indicated using the
locationofRFP predicate. The rule that triggers sending the RFP to the seller is indicated by <sendRFP>: if
the buyer wants to buy computers and the seller sells computers and is in the preferred vendor list of the
buyer, send the RFP from the indicated local filesystem location to the seller’s sales e-mail address. The
predicate sendRFPtoComputerSeller is associated with the situated effector procedure emailMessage,
which uses the JavaMail API to send the RFP ruleset to the seller via e-mail.

Buyer Solo KB – BSO1
wantToBuy(acme, computers);
seller(dell);
seller(staples);
sell(dell, computers);
sell(staples, officesupplies);
inPreferredVendorList(acme, dell);
inPreferredVendorList(acme, staples);
emailSalesAddress(dell, "sales@dell.com");
emailSalesAddress(staples, "sales@staples.com");
locationofRFP(acme, computers, "c:\\buyertosellerRFP.clp");

<sendRFP>
if
 wantToBuy(?Buyer, computers) AND seller(?Vendor) AND
 sell(?Vendor, computers) AND inPreferredVendorList(?Buyer, ?Vendor) AND
 emailSalesAddress(?Vendor, ?Address) AND
 locationofRFP(?Buyer, computers, ?Location)
then
 sendRFPtoComputerSeller(?Address, ?Location);

74

<emptylabel>
 Effector: sendRFPtoComputerSeller
 Class: Effector_EmailRFP
 Method: emailMessage
 path:
"com.ibm.commonrules.examples.situated_programming_examples.familymsg.aprocs";

In SweetRules V2.1, the “exhaustForwardInfer” command is given to derive all the conclusions from a
given rulebase, and along with those conclusions to perform all the associated effecting actions that those
conclusions trigger (i.e., sanction). For example, the command C2 below generates all the conclusions of
BSO1 and (as an effecting action) sends the RFP to the seller. The “clp” in the first two arguments of the
command indicates that CommonRules V3.3. format is the input and output knowledge base format, the
third argument gives the location of BSO1, and the fourth argument specifies that IBM CommonRules
should be used indirectly as an underlying inference engine when performing inferencing. SweetRules V2.1
software allows for a choice of such underlying engines. In our example, SweetRules enables Jess or XSB,
as well as CommonRules, to be used as indirect underlying engine; for each choice of underlying engine, it
would generate semantically equivalent conclusions and perform the same set of triggered effecting actions

exhaustForwardInfer clp clp c:\buyertosellerSendRFP.clp CommonRules (C2)

The RFP sent by the buyer to the seller is a collection of rules. The RFP consists of two parts -- a shared
knowledge base that contains most importantly the required computer configuration details (we call this
knowledge base BSH1) and a set of f-queries that request specific answers from the seller (we call this set
of queries BFQ1).

BSH1 indicates the buyer name, quantity of item ordered, buyer state, and the required computer
configuration details. The rule <checkOfferedConfiguration> is used by the buyer to check whether the
vendor offered configuration satisfies the minimum requirements. Since RuleML built-ins are not currently
directly and smoothly supported in SweetRules V2.1 beyond the SWRL subset of RuleML, we also provide
several facts to support arithmetic comparison.

Buyer to Seller RFP (BSH1)
buyerName(acme); /* buyer name is acme */
quantityOfItemOrdered(fifty); /* quantity of item ordered is fifty */

/* buyer is located in the state of Florida */
buyerLocationState(florida);

/* speed of processor should be at least 2GHz */
requiredMinProcessorSpeedInGHZ(twogigahertz);
if
 requiredMinProcessorSpeedInGHZ(?Speed) and
 offeredProcessorSpeedInGHZ(?OfferSpeed) and isGreaterThan(?OfferSpeed, ?Speed)
then
 isSpeedAcceptable(true);

/* not shown here for brevity: there are also additional computer system
configuration details (memory size, hard disk storage capacity, monitor size,
monitor type (flat?), monitor resolution) */ ...
...

/* check if the configuration is acceptable */
<checkOfferedConfiguration>
if
 isSpeedAcceptable(true) and isMemorySizeAcceptable(true) and
 isHardDiskSizeAcceptable(true) and isMonitorSizeAcceptable(true) and
 offeredMonitorType(flat) and
 offeredMonitorResolution(tenTwentyFourBySevenSixtyEight)
then
 isOfferedConfigurationAcceptable(true);

75

/* The following are some facts in lieu of arithmetic built-ins. */
isGreaterThan(fourgigahertz, twogigahertz);
isGreaterThan(onezerotwofourmb, fivetwelvemb);
isGreaterThan(sixtyGB, fortyGB);
isGreaterThan(seventeen, fifteen);

BFQ1 is the collection of f-queries that ask the seller to specify the vendor quote identifier, the offered
computer configuration details, the unit price of item, taxes as percent of price, service charge as percent of
price, delivery charges for shipment, and the delivery time in days. For brevity, only a few of the f-queries
are shown below.

Buyer to Seller f-Queries (BFQ1)
<rulebase>
 <_rbaselab>
 <ind>FQueries</ind>
 </_rbaselab>
 <query>
 <_body>
 <fclit cneg="no" fneg="no">
 <_opr>
 <rel>quoteID</rel>
 </_opr>
 <var>QuoteID</var>
 </fclit>
 </_body>
 </query>
 <query>
 <_body>
 <fclit cneg="no" fneg="no">
 <_opr>
 <rel>offeredProcessorSpeedInGHZ</rel>
 </_opr>
 <var>Speed</var>
 </fclit>
 </_body>
 </query>
...

After the seller receives the RFP, the seller sends its rule-based contract proposal to the buyer. The proposal
contains three parts – BSH1 (i.e. shared knowledge base transmitted from buyer to seller – see above),
answers to f-queries posed by the buyer plus the shared knowledge base that contains rules about pricing,
rebates, financing options and other business provisions (we call this SSH1), and lastly f-queries for the
buyer (SFQ1).

Seller to Buyer (SSH1)
/* quote ID is 1 */
quoteID(one);
/* computer configuration details */
offeredProcessorSpeedInGHZ(fourgigahertz);
offeredSizeofmemoryInMB(onezerotwofourmb);
offeredSizeofharddiskInGB(sixtyGB);
offeredMonitorSizeInInches(seventeen);
offeredMonitorType(flat);
offeredMonitorResolution(tenTwentyFourBySevenSixtyEight);

/* Pricing Rules */
/* if purchase date is before April 1 2005, then unit Price is $600;
 if purchase date is before April 15 2005, then unit Price is $650*/
<earlyPurchase>
if

76

 quoteID(?QuoteID) and purchaseDate(?QuoteID, ?Date) and
isLessThan(?Date, oneApr05)

then
 unitPriceOfItem(?QuoteID, sixhundred);
<latePurchase>
if
 quoteID(?QuoteID) and purchaseDate(?QuoteID, ?Date) and

isLessThan(?Date, fifteenApr05)
then
 unitPriceOfItem(?QuoteID, sixhundredfifty);

overrides(earlyPurchase, latePurchase);

MUTEX
 unitPriceOfItem(?QuoteID, sixhundred) and

unitPriceOfItem(?QuoteID, sixhundredfifty);

/* there is no service charge */
if
 quoteID(?QuoteID)
then
 serviceChargeAsPercentOfPrice(?QuoteID, zeroPercent);

/* Delivery Options */

/* if delivery type is standard then delivery charge is $2500 for the order
 if delivery type is express then delivery charge is $5000 for the order
*/
<standard>
if
 quoteID(?QuoteID) and deliveryType(?QuoteID, standard)
then
 deliveryChargesForShipment(?QuoteID, twentyfivehundred);

<express>
if
 quoteID(?QuoteID) and deliveryType(?QuoteID, express)
then
 deliveryChargesForShipment(?QuoteID, fivethousand);
MUTEX
 deliveryType(?QuoteID, standard) and deliveryType(?QuoteID, express);

/* if delivery type is standard then delivery time in days is 14 days
 if delivery type is express then delivery time in days is 7 days
*/
<standardDeliveryTime>
if
 quoteID(?QuoteID) and deliveryType(?QuoteID, standard)
then
 deliveryTimeInDays(?QuoteID, fourteendays);

<expressDeliveryTime>
if
 quoteID(?QuoteID) and deliveryType(?QuoteID, express)
then
 deliveryTimeInDays(?QuoteID, sevendays);

MUTEX
 deliveryTimeInDays(?QuoteID, fourteendays) and
deliveryTimeInDays(?QuoteID, sevendays);

/* Additional assertions from Seller */
/* Financial Incentives section */

77

/* not shown here for brevity: the financial incentives of discount pricing,
rebate, financing option already shown above in section 4 */
...
/* Sales Tax */
/* no sales tax in Florida */
<tax0>
if
 quoteID(?QuoteID) and buyerLocationState(florida)
then
 taxesAsPercent(?QuoteID, zeroPercent);

/* 5% sales tax in states other than Florida */
<tax5>
if
 quoteID(?QuoteID) and buyerLocationState(?X) and NotEquals(?X, florida)
then
 taxesAsPercent(?QuoteID, fivePercent);

MUTEX
 taxesAsPercent(?QuoteID, zeroPercent) and

taxesAsPercent(?QuoteID, fivePercent);

/* Object-oriented default inheritance using rules */
/* If you buy, then default payment mode is invoice */
<buyRegular> if Buy(?QuoteID) then
paymentMode(?QuoteID, invoice);

/* BuyWithCredit is a subclass of Buy */
if BuyWithCredit(?QuoteID) then Buy(?QuoteID);

<buyCredit>
if BuyWithCredit(?QuoteID) then paymentMode(?QuoteID, credit);

overrides(buyCredit, buyRegular);

MUTEX
 paymentMode(?QuoteID, credit) and paymentMode(?QuoteID, invoice);

isLessThan(twentyfiveMarch05, oneApr05);
isLessThan(twentyfiveMarch05, fifteenApr05);
isLessThan(fiveApr05, fifteenApr05);
isGreaterThan(eighty, seventyfive);
NotEquals(massachusetts, florida);

SFQ1 is a collection of f-queries posed by the seller for the buyer. The seller asks whether the buyer would
like to buy and whether the buyer would like to buy with a credit card. The seller also queries for the
purchase date, delivery type and number of months of financing requested. For brevity, only a few of the f-
queries are shown below.

Seller to Buyer F-Queries (SFQ1)
<rulebase>
 <_rbaselab>
 <ind>FQueries</ind>
 </_rbaselab>
 <query>
 <_body>
 <fclit cneg="no" fneg="no">
 <_opr>
 <rel>purchaseDate</rel>
 </_opr>
 <var>QuoteID</var>
 <var>Date</var>

78

 </fclit>
 </_body>
 </query>
...

When the buyer receives the proposal ruleset from the seller, it answers the queries posed by the seller (see
BA1 below) and then performs exhaustive inferencing on the resulting ruleset (BSH1 + SSH1 + BA1) to
obtain the derived conclusion set (CS1). Logical inferencing allows the buyer to determine the key
parameters (such as unit price, delivery charges, taxes, etc.) of the proposal and also whether the proposal
meets minimum specified criteria in the RFP.

Answers to F-Queries posed by seller (BA1)
Buy(one);
BuyWithCredit(one);
purchaseDate(one, fiveApr05);
deliveryType(one, express);
financeForMonths(one, thirtysixMonths);

The conclusion set (CS1) tells the buyer that the offered configuration is acceptable, unit price of item will
be $650, delivery time will be 7 days, % discount already included in the price is 13%, taxes are 5%, rebate
amount is $1000, and payment mode is credit.

Conclusion Set (CS1) obtained from BSH1 + SSH1 + BA1
isLessThan(twentyfiveMarch05, oneApr05);
isLessThan(twentyfiveMarch05, fifteenApr05);
isLessThan(fiveApr05, fifteenApr05);
requiredMinProcessorSpeedInGHZ(twogigahertz);
quoteID(one);
requiredMinSizeofmemoryInMB(fivetwelvemb);
offeredSizeofmemoryInMB(onezerotwofourmb);
requiredMonitorResoluton(tenTwentyFourBySevenSixtyEight);
purchaseDate(one, fiveApr05);
quantityOfItemOrdered(eighty);
BuyWithCredit(one);
deliveryType(one, express);
NotEquals(massachusetts, florida);
isGreaterThan(fourgigahertz, twogigahertz);
isGreaterThan(onezerotwofourmb, fivetwelvemb);
isGreaterThan(sixtyGB, fortyGB);
isGreaterThan(seventeen, fifteen);
isGreaterThan(eighty, seventyfive);
creditCardNumber(one, ccNumber9876543298765432);
offeredSizeofharddiskInGB(sixtyGB);
overrides(earlyPurchase, latePurchase);
overrides(earlyPurchaseDiscount, latePurchaseDiscount);
overrides(buyCredit, buyRegular);
offeredMonitorSizeInInches(seventeen);
requiredMinSizeofharddiskInGB(fortyGB);
offeredProcessorSpeedInGHZ(fourgigahertz);
financeForMonths(one, thirtysixMonths);
requiredMonitorType(flat);
offeredMonitorType(flat);
buyerName(acme);
buyerLocationState(massachusetts);
requiredMinMonitorSizeInInches(fifteen);
offeredMonitorResolution(tenTwentyFourBySevenSixtyEight);
vendorName(dell);
serviceChargeAsPercentOfPrice(one, zeroPercent);
deliveryChargesForShipment(one, fivethousand);
isSpeedAcceptable(true);
Buy(one);

79

rebateAmount(one, thousand);
isMonitorSizeAcceptable(true);
isMemorySizeAcceptable(true);
isHardDiskSizeAcceptable(true);
isOfferedConfigurationAcceptable(true);
deliveryTimeInDays(one, sevendays);
discountPercentAlreadyIncluded(one, thirteen);
unitPriceOfItem(one, sixhundredfifty);
taxesAsPercent(one, fivePercent);
paymentMode(one, credit);

6 Relationship of other B2B Technologies to our Approach

RosettaNet and ebXML are two very important and influential approaches to XML-based e-business
messaging including about contracting and e-commerce. It is desirable to be able to use our SweetDeal
approach together with such XML-based e-business messaging infrastructure. In this section, we discuss
how SweetDeal and (SCLP) RuleML can be used with RosettaNet and with ebXML. The punchline is that
they play well together; the SweetDeal contract rulesets can be carried as the “letters” content within the
“envelopes” of RosettaNet or ebXML messages, i.e., within their messaging interfaces and protocols. In
doing so, it is both possible and useful to utilize the (non-OWL) ontologies provided by RosettaNet and
ebXML, and to perform sending of messages as actions.

6.1 RosettaNet

Next, we begin with RosettaNet, and discuss specifically how RosettaNet Partner Interface Processes
(PIPs) can be used with RuleML in the context of our electronic procurement scenario. RosettaNet is a
consortium of information technology, electronic components, semiconductor manufacturing and solutions
providers, which seeks to establish a common language and standard processes for business-to-business
(B2B) transactions. RosettaNet PIPs define business processes between trading partners. The PIP specifies
the roles of the trading partners that participate in the business process as well as the business activities that
compose the process. The PIP also specifies XML-based action messages or business documents that are
exchanged between the roles during business activities. The specification of a standard structure for the
business documents is a major part of the PIP specification. An example of a RosettaNet PIP is PIP3A1
which provides a detailed XML message guideline for implementing the Request Quote business process.
A message fragment from PIP3A1 is shown below –
 <ContactInformation>
 <contactName>
 <FreeFormText>A</FreeFormText>
 <EmailAddress>abc@xyz.com</EmailAddress>
 …..
 </contactName>
 </ContactInformation>
The message fragment above specifies the structure for contact information for the buyer who sends the
request for quote to the seller. Our SweetDeal approach can be used straightforwardly in combination with
the exchange of RosettaNet PIP messages between the two parties. We can also directly use the
standardized (non-OWL) ontological terms from the PIP messages in our rulebases. For example, the
request for proposal (RFP) sent by the buyer to the seller in our scenario allows for use of the ontological
terms in the RosettaNet PIP3A1 XML message guidelines. A SweetDeal quote (contract proposal) rulebase
cf. our earlier scenario can then employ as predicates (i.e., as ontological terms) various properties drawn
from the PIP specification, e.g., the unit price of the product, which is specified in RosettaNet using the
following DTD segment –

<!ELEMENT unitPrice (ProductPricing) >
<!ELEMENT ProductPricing (FinancialAmount , GlobalPriceTypeCode) >
<!ELEMENT FinancialAmount (GlobalCurrencyCode , MonetaryAmount) >
<!ELEMENT GlobalCurrencyCode (#PCDATA) >
<!ELEMENT MonetaryAmount (#PCDATA) >

80

For example, the seller would specify the following fact rule in the proposal to the buyer:

unitPrice(?GlobalCurrencyCode, ?MonetaryAmount).

6.2 ebXML

Likewise, ebXML can be used in our scenario along with RuleML and the SweetDeal approach to support
electronic contracting between two parties. Both the buyer and the seller in our scenario would maintain
ebXML collaboration protocol profiles (CPPs) that would describe the specific business collaborations
supported by each of the parties using the ebXML business process specification schema (BPSS). For
example, the buyer CPP would show that the “request for proposal” is a business process that is supported
by it. The details of the “request for proposal” business process would be specified using the ebXML
BPSS. The parties that will engage in the interaction protocol will reach agreement on how to collaborate
by exchanging the CPPs to construct a collaboration protocol agreement (CPA), which fixes the protocol
for interaction between the parties. Once agreement has been reached, ebXML messages in accordance
with the collaboration agreement can be exchanged using ebMS (or ebXML Message Service). The
payload of these messages can contain the RuleML rulebases to establish the electronic procurement
contract.

7 Conclusions
 In this paper, we have extended the SweetDeal approach and applied the extended approach using the new
SweetRules V2.1 semantic web rules prototype software to a practical, real-world B2B application in the
domain of electronic contracting. The electronic procurement contracting scenario that we have described
in detail shows how semantic web rules technology, specifically RuleML and SweetRules, can be
powerfully used in e-contracting.

Acknowledgements: Thanks to Shashidhara Ganjugunte, Chitravanu Neogy, Said Tabet, and the rest of
the SweetRules development team, for helping to realize the implementation, and for useful discussions.

References
[1] Rule Markup Language Initiative, http://www.ruleml.org and http://www.mit.edu/~bgrosof/#RuleML
[2] SweetRules, http://sweetrules.projects.semwebcentral.org/
[3] OWL and the Semantic Web Activity of the World Wide Web Consortium. http://www.w3.org/2001/sw
[4] RosettaNet, http://www.rosettanet.org
[5] ebXML (ebusiness XML) standards effort, http://www.ebxml.org
[6] Grosof, B.N., “Representing E-Business Rules for Rules for the Semantic Web: Situated Courteous

Logic Programs in RuleML”. Proc. Wksh. on Information Technology and Systems
(WITS ‘01), 2001.

[7] XSB logic programming system. http://xsb.sourceforge.net/
[8] Jess (Java Expert System Shell). http://herzberg.ca.sandia.gov/jess/
[9] Jena, http://jena.sourceforge.net/
[10] IBM CommonRules. http://www.alphaworks.ibm.com and http://www.research.ibm.com/rules/
[11] SWRL, A Semantic Web Rule Language Combining OWL and RuleML,
 http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
[12] Grosof, B.N., C.T. Poon, “SweetDeal: Representing Agent Contracts With Exceptions using Semantic

 Web Rules, Ontologies, and Process Descriptions”. International Journal of Electronic Commerce
 (IJEC), 8(4):61-98, Summer 2004, Special Issue on Web E-Commerce.

[13] Grosof, B.N., Horrocks, I., Volz, R., and Decker, S., “Description Logic Programs:
 Combining Logic Programs with Description Logic”. Proc. 12th Intl. Conf. on the World Wide Web
 (WWW-2003).
[14] JavaMail, http://java.sun.com/products/javamail/
[15] OWL Web Ontology Language, http://www.w3.org/TR/owl-features/
[16] Semantic Web Services Framework Version 1.0, http://www.daml.org/services/swsf/1.0

81

The Taga agent framework

Travel Agent Game in Agentcities (TAGA) is the framework that extends and enhances the
Trading Agent Competition (TAC) scenario to work in Agentcities, an open multi agent envi-
ronment based on FIPA compliant platforms. TAGA uses the semantic web languages and tools
(RDF and OWL) to specify and publish the underlying common ontologies; as a content lan-
guage within the FIPA ACL messages; as the basis for agent knowledge bases via XSB-based
reasoning tools; to describe and reason about services. TAGA extends the FIPA protocols to
support open market auctions and enriches the Agentcities with auction services. The introducing
of the semantic web languages improves the interoperability among agents. TAGA is intended as
a platform for research in multi-agent systems, the semantic web and automated trading in dy-
namic markets as well as a self-contained application for teaching and experimentation with
these technologies.

TAGA was used to demonstrate how semantic web technologies would fit into the popular FIPA
multiagent systems framework. The reusable components include the FOWL reasoning system,
and a number of ontologies designed support using OWL in a multi-agent systems environment.

 Using Semantic web technology in Multi-Agent systems: a case study in the TAGA Trad-
ing agent environment

TAGA is intended as a platform for research in multi-agent systems, the semantic web and auto-
mated trading in dynamic markets as well as a self-contained application for teaching and ex-
perimentation with these technologies. The following paper by Youyong Zou, Tim Finin, Li
Ding, Harry Chen, and Rong Pan appeared in the Proceeding of the 5th International Conference
on Electronic Commerce in September 2003.

F-OWL: an Inference Engine for the Semantic Web

F-OWL is an inference engine for the semantic web language OWL language based on F-logic,
an approach to defining frame-based systems in logic. F-OWL is implemented using XSB and
Flora-2 and takes full advantage of their features. We describe how F-OWL computes ontology
entailment and compare it with other description logic based approaches. We also describe
TAGA, a trading agent environment that we have used as a test bed for F-OWL and to explore
how multiagent systems can use semantic web concepts and technology.

82

Using Semantic Web technology in Multi-Agent Systems:
a case study in the TAGA trading agent environment

Youyong Zou, Tim Finin, Li Ding, Harry Chen, Rong Pan
 U.Maryland Baltimore County

 1000 Hilltop Circle
 Baltimore, MD, 21250

 410-455-3971

 {yzou1,finin,dingli1,hchen4 }@cs.umbc.edu

ABSTRACT
Travel Agent Game in Agentcities (TAGA) is the framework that
extends and enhances the Trading Agent Competition (TAC)
scenario to work in Agentcities, an open multi agent environment
based on FIPA compliant pla tforms. TAGA uses the semantic web
languages and tools (RDF and OWL) to specify and publish the
underlying common ontologies; as a content language within the
FIPA ACL messages; as the basis for agent knowledge bases via
XSB-based reasoning tools; to describe and reason about services.
TAGA extends the FIPA protocols to support open market auctions
and enriches the Agentcities with auction services. The introducing
of the semantic web languages improves the interoperability among
agents. TAGA is intended as a platform for research in multi-agent
systems, the semantic web and automated trading in dynamic
markets as well as a self-contained application for teaching and
experimentation with these technologies.

Keywords
Agentcities, FIPA, Multi Agent System, OWL, Semantic Web,
Trading Agent Competition.

1. INTRODUCTION
The Trading Agent Competition (TAC) [Wellman, 2002] was a test
bed for intelligent software agents that interact through simultaneous
auctions to obtain services for customers. The trading agents
operated within the travel market scenario, buying and selling goods
to best serve their given travel clients. TAC was designed to
promote and encourage research in markets involving auction and
autonomous trading agents and had proven to be successful after
three consecutive year’s competitions.

Although TAC’s framework, infrastructure and game rules had
evolved over the past three competitions [Stone, 2000] [Greenwald,
2001] [Wellman, 2002], the assumptions and approach of TAC
limited its usefulness as a realistic test bed for agent based
automated commerce. TAC used centralized market server as the

sole mechanism for service discovery, communication, coordination,
commitment, and control among the partic ipating software agents.
The trading agents communicate with the central auction server
through network socket interface, exchanging pre-defined XML-
based messages. In real world, the auction servers (for example,
priceline.com and hotwire.com) and service providers are
distributed among the massive open Internet and have distinct
service descriptions and diverse service access interfaces. The
abstractness and simplicity of the TAC approach helped to launch it
as a research vehicle for studying bidding strategies, but are now
perceived as a limiting factor for exploring the wide range of issues
inherent in automated trading in open environment.

Agentcities [Dale, 2002] is the international initiative designed to
explore the commercial and research potential of agent-based
applications by constructing an open distributed network of
platforms to host diverse agents and services. The ultimate goal is to
enable the dynamic, intelligent and autonomous composition of
services to achieve user and business tasks, therefore creating
compound services to address changing needs. In such an open and
distributed environment, the need of standard mechanisms and
specifications is crucial for ensuring interoperability of distinct
systems. The Foundation for Intelligent Physical gents (FIPA)
produces such standards for heterogeneous and interacting agents
and agent-based systems. In the production of these standards,
FIPA promotes the technologies and interoperability specifications
that facilitate the end-to-end inter-working of intelligent agent
systems in modern commercial and industrial settings.

Inspired by TAC, we have developed Travel Agent Game in
Agentcities (TAGA) on the foundation of FIPA technology and the
Agentcities infrastructure. The agents and services use FIPA
supported languages, protocols and service interfaces to create the
travel market framework and provide stable communication
environment where messages expressed in semantic languages can
be exchanged. The travel market is the combination of auctions and
varying markets including service registries, service brokerage,
wholesalers, peer-to-peer transactions, bilateral negotiation, etc.
This provides a richer test bed for experimenting with agents and
web services as well as a interesting scenario to test and challenge
agent technology. TAGA is running as a continuous open game at
http://taga.umbc.edu/ and source code is available for research and
teaching purposes.

The next section introduces the TAGA game and six types of
agents. The details of using semantic web technology are presented
in Section three. We discuss TAGA’s features and our research

 Copyright is held by the author/owner.
 ICEC 2003. Pittsburgh, PA
 ACM 1-58113-788-5/03/09

83

contributions in Section four and suggest the future works in Section
five.

2. TAGA GAME AND AGENTS
We design TAGA as a general framework for running agent-based
market simulations and games. Our first use of TAGA has been to
build a travel competition along the lines that used in the last three
year‘s TACs. In the competition, customers travel from City A to
City B and spend several days before flying back. A travel
package includes a round-trip flight ticket, corresponding hotel
accommodation and tickets to entertainment events. A travel agent
(an entrant to the game) competes with other travel agents in
making contracts with customers and purchasing the limited travel
services from the Travel Service Agents. Customer selects the
travel agent with best travel itinerary. The objective of the travel
agent is to acquire more customers, fulfill the customer’s travel
package, and maximize the profit.

TAGA provides a flexible framework to run the travel market
game. Figure 1 show the structure of TAGA. The collaboration and
competition among six types of agents who play different market
roles simulate the real world travel market. We find that basing our
implementation on FIPA compliant agent platforms has made the
framework extremely flexible. We’ll briefly describe the different
agents in our initial TAGA game.

Figure 1: TAGA Architecture

The Auction Service Agent (ASA) operates all of the auctions in
TAGA. Supported auction types include English and Dutch auctions
as well as other dynamic markets similar to Priceline.com and
Hotwire.com.

A Service Agent (SA) offers travel related service units such as
airline tickets, lodging and entertainment tickets. Each class of travel
related service has multiple providers with different service quality
level and with limited service units. It allows other agents to query
its description (e.g. service type, service quality, location) and its
inventory (the availability or price of a certain type of service unit).
Other agents may directly buy the service units through published
service interface. SA also bids intentionally in the auctions to sell its
good, e.g. listing its goods in auction and wait for the proper buyer.

A Travel Agent (TA) is a business that helps customers acquire
travel service units and organize travel plan. The units can be
bought either directly from the service agents, or through an auction
server.

A Bulletin Board Agent (BBA) provides a mechanism helping
customer agents find and engage one or more travel agents.

A Customer Agent (CA) represents an individual customer who
has particular travel constraints and preferences. Its goal is to
engage one or more TAs, negotiate with them over travel packages,
and select one TA that is able to acquire all needed travel service
units.

The Market Oversight Agent monitors the game and updates the
financial model after each reported transaction and finally
announces the winning TA when the game is over.

The basic cycle of the TAGA game has the following five stages:

• A customer-generating agent creates a new customer with
particular travel constraints and preferences chosen from a
certain distribution.

• The CA sends the customer’s travel constraints and
preferences to the BBA in the form of a CFP (call for
proposal) message. The BBA forwards the CA’s CFP
message to each of the TAs that has registered with it. Each
TA considers the CA's CFP independently and decides
whether and how to respond.

• When deciding to propose a travel package, The TA contacts
the necessary ASAs and SAs and assembles a travel itinerary.
Note that the TA is free to implement a complex strategy using
both aggregate markets (ASAs) as well as direct negotiation
with SAs. The proposal to the CA includes the travel itinerary,
a set of travel units, the total price and the penalty to be
suffered by the TA if it is fail to complete the transaction.

• The CA negotiates with the TAs ultimately selecting one from
which to purchase an itinerary based on its constraints,
preferences and purchasing strategy (which might, for
example, depend on a TA’s reputation).

• Once the TA has a commitment from the CA, it attempts to
purchase the units in the itinerary from the ASAs and SAs.
There are two possible outcomes: the TA acquires the units
and completes the transaction resulting in a satisfied CA and a
profit or loss for the TA, or the TA is unable or unwilling to
purchase all of the units, resulting in an aborted transaction and
the invocation of the penalty (which can involve both a
monetary and a reputation component).

3. AGENT COMMUNICATION
3.1 Agent Communication Model
The previous TACs used a straightforward client-server
architecture in which a single TAC server managed all travel
service suppliers as well as the customers. Game participants wrote
travel agency (TA) agents that connected as clients to the central
TAC server. Moreover, these TA agents could only interact with
service providers through centralized auction markets. While this
architecture greatly simplifies both the development of the TAC
infrastructure and the programming of a TAC client, it is a poor
model for commerce in the real world.

Peer-to-peer or multi-agent systems offer a more realistic model
where customers, service providers and various kinds of
“middlemen”, including market providers, operate as autonomous
peer agents. Moreover, agents can develop complex strategies,
which involved a combination of direct transactions (e.g., TA buy

84

direct from hotel agent) as well as auction-mediated transactions of
various kinds. Finally, adopting a multi-agent systems approach
integrated all aspects of commerce (service discovery, information
seeking, negotiation, decision making, commitment, transaction
execution et.) in a more natural manner.

The FIPA standards offer mature specifications for multi-agent
systems communication, interactions and infrastructure with an
emphasis on agent communication languages (ACLs) and protocols.
We found the FIPA framework to be a good one for TAGA when
augmented with the semantic web languages RDF [zou, 2003] and
OWL. In the remainder of this section we will describe the choices
made for the content languages.

3.2 OWL as Content Language
The content language is a language used to express the content of
messages exchanged between agents. The FIPA communication
infrastructure allows agents to communicate using any mutually
understandable content language as long as it satisfies a few
minimal criteria as a FIPA compliant content language. Published
FIPA specifications provide a library of registered FIPA compliant
content language, including FIPA-SL, XML and RDF. A good
content language should be able to express rich forms of content
and can be efficiently processed and fit well with existing
technology. XML, used by the TAC system, is adequate as a low
level language for encoding information but falls short as a language
in which to express information at the knowledge level, even when
augmented by more recent components such as XML Schema, XSL
or through applications such as WSDL.

Our TAGA system uses OWL [Dean, 2002] as the content
language for agent communication. Compared with RDF that used
on our previous TAGA work [Zou, 2003], OWL has a well-defined
model-theoretic semantics as well as an axiomatic specification that
determines the intended interpretations of the language. OWL is
unambiguously computer-interpretable, thus making it amenable to
agent interoperability and automated reasoning techniques. The
benefit of adopting a stronger semantically rich content language
like OWL is that it facilitates a higher-level of interoperability
between agents. By agreeing on how meaning is conveyed, it is
simpler for applications to share meaningful content.

We have defined the OWL ontology for use as a FIPA-compliant
content language. In addition to the basic required classes (e.g.,
Agent, ACLMessage, Service, etc.) and necessary expressive
requirement (such as Proposition, Action, and Reification), our
ontology provides supports for expressing rules, queries and
responses to queries. We believe that OWL is a good choice as a
general ACL content language for four reasons. First, its
expressive power as a knowledge representation language seems to
be adequate for many if not most needs of current agent based
systems. Second, it offers better support for using terms drawn
from multiple ontologies than do current popular ACL content
languages. Third, as a semantic web language, it is designed to fit
into and integrate with web-based information and service systems.
Fourth, OWL has the potential to be a widely accepted and used
representation language, enhancing the potential for interoperability
among many systems. We will touch briefly on the first two points
and leave the others as exercises for the reader.

 To demonstrate that OWL is an adequate language for ACL
content we consider a list of test cases presented in [Bothelo 2002].

These examples were used as an expressive test for a candidate
FIPA content language and compared the result of encoding these
in SL, KIF, ebXML, Prolog and DAML. Clearly OWL is less
expressive than SL, KIF or Prolog, but the OWL version of these
test cases given in Table 1 show that it’s up to most of tasks it might
be asked to serve.

Table 1: OWL Expre ssivity Test

Expressio
n

Representation Comment

“Schröding
er’s Cat is
alive”

<Cat rdf:ID=“schrödinger-s_cat”>
 <owner>Shrodinger</owner>
 <status> alive </status>
</Cat>

There is a
live cat in
the world
whose
owner is
Shrodinger.

“Cats are
animals”

<owl:Class rdf:ID=“cat”>
 <rdfs:subClassOf
rdf:resource=“#animal”>
</owl:Class>

Cat is
subclass of
animal

“You
making the
tea”

<fipaowl:Action
rdf:ID=”tea_action1”>
 <fipaowl:act>making-tea
</fipaowl:act>
<fipaowl:actor>you</fipaowl:actor>
<fipaowl:Action>

There is a
making-tea
action,
“you” are
the actor.

“Drinking
too much
is bad for
you”

<Behavior rdf:ID=“drinktoomuch”>
<hasBehavior>excessive_drinking</
hasBehavior>
<healthy>bad</healthy>
</Behavior >

The
behavior of
drinking too
much is bad
for your
health.

“All red
things”

<owl:Class rdf:ID="allredthing ">
<owl:intersectionOf
rdf:parseType="Collection">
<owl:Classrdf:about="#Thing"/>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="#hasColor" />
 <owl:hasValue
rdf:resource="#Red" />
 </owl:Restriction>
</owl:intersectionOf>
</owl:Class>

The things
whose color
are red.

“Any color
a car might
have”

<owl:Class rdf:ID="anycarcolor">
 <rdfs:subClassOf>
<owl:Restriction>
 <owl:onProperty
rdf:resource="#color" />
<owl:allValuesFrom
rdf:resource="#CarColor " />
 </owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

The color
that limits
the color
property
value in the
car colors.
This can
also be a
query:
“Select
color where
color in Car
Color”

“All things
are hot”

<owl:Class rdf:about= “#Thing”>
<rdfs:subClassOf>

All things’s
temperature

85

 <owl:Restriction>
 <owl:onProperty
rdf:resource="#tempterature"/>
<owl:hasValue rdf:resource="#hot"
/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

are hot.

“Somethin
g is cold”

<owl:Thing rdf:ID= “cold_thing”>
<temperature>cold</temperature>
</owl:Thing>

There exist
something
whose
temperature
is cold.

“Herring
or Perch”

<owl:oneOf
rdf:parseType="Collection">
<owl:Thing rdf:about="#Vokda "/>
 <owl:Thing rdf:about="#Perch"/>
 </owl:oneOf>

“Vodka
and
Tonic”.

 <owl:union Of
rdf:parseType="Collection">
<owl:Class rdf:about="#Vodka " />
 <owl:Class rdf:about="#Tonic" />
 </owl:unionOf>

“Not
cricket”

<owl:Class rdf:ID="Noncricket">
 <owl:complementOf
rdf:resource="#Cricket " />
 </owl:Class>

“Success
implies
Payment”

<fipaowl:Rule> <fipaowl:Implies >
<fipaowl:head >
Payment</fipaowl:head >
<fipaowl:body >Success
</fipaowl:body >
</fipaowl:Implies> </fipaowl:Rule>

The rule :
Payment :-
Success.

“Luis has
the
persistent
goal that
W”

<Person rdf:ID= “Luis”>
 <hasPersistentGoals> W
</hasPersistentGoals>
</Person>

“Steve
Believes
X”

<Person rdf:ID=”steve”>
 < hasProposition>
 < Belief rdf:ID=”stevebelief1”>
 < believe>true</believe>
< Statement > X</Statement>
 </Belief> </hasProposition>
</Person >

“Jonathan
Desires
Y”

<Person rdf:ID=”Jonathan”>
 <hasProposition>
<Desire rdf:ID=”jonthandesire11”>
<desire >true</desire>
<Statement > Y </Statement>
</Desire> </hasProposition>
</Person >

“Matthias
Intends Z”

<Person rdf:ID=”Matthias”>
 < hasProposition>
<Intend rdf:ID=”Matthiasintend1”>
 <intend>true</intend>
 <Statement > Z </Statement>
 </Intend> </hasProposition>
</Person >

Compared with other ACL content languages, OWL provides much
better support in modeling, maintaining, and sharing ontologies.
Standard content languages such as SL and KIF offer no explicit
mechanisms for ontology support. FIPA inherited the simple
mechanism for ontology specification first used in KQML that
essentially required that all content terms in a particular message be
tagged as coming from a single ontology. Although variations and
“work arounds” to this constraint have been proposed, implemented
and used, none have been formally adopted as part of the stable
FIPA specification. OWL supports multiple namespaces and
ontologies and, in fact, is a large part of its raison d'etre. Large
scale and open multi-agent systems will benefit from OWL’s
abilities to integrate information from different ontologies.
Moreover, OWL and other semantic web languages, will better
support other services essential to large scale open systems, such as
the capability to translate or map information from one ontology to
another and to negotiate meaning or otherwise resolve differences
between ontologies.

3.3 Understanding Messages
When an agent receives an incoming ACL message, it computes
the meaning of the message from the ACL semantics, the protocols
in effect, the content language and the conversational context. The
agent’s subsequent behavior, both internal (e.g., updating its
knowledge base) and external (e.g., generating a response) depends
on the correct interpretation of the message’s meaning. Thus, a
sound and, if possible, complete understanding the semantics of the
key communication components (ACL, protocol, ontologies, content
language, context) is extremely important. In TAGA, the service
providers are independent and autonomous entities, which makes
enforcing a design decision that all use exactly the same ontology or
protocol difficult, if not impossible. For example, the Delta Airline
service agent may has its own view of travel business and uses
class and property terms that extend an ontology used in the
industry as a whole. This situation parallels that for the semantic
web as a whole – some amount of diversity is inevitable and must
be panned for lest our systems become impossibly brittle.

The ontologies in TAGA are distributed and managed by multiple
parties. This distributed model is a better fit for deployment in an
open web environment. There is no centralized site or agent that has
to understand every ontologies. Ontologies and rules are designed
and implemented by service owners to reflect their business models
and meet their requirements; tan agent belonging to a service owner
is responsible for answering the question related to the ontologies it
uses. Ontologies store in local and may access only by local agent.
We could define personalized ontologies and rules. It would help
resolving the problem of security and trust.

Many of the agents we have implemented in the TAGA system use
FOWL (Flora OWL) to represent and reason about content
presented in RDF or OWL. FOWL is a flora-2 [Yang 2000]
program that interprets RDF and OWL represented as a collection
of RDF triples. Flora-2 is itself a compiler that compiles from a
dialect of f-logic into XSB, taking advantage of the tabling, HiLog
and well-founded semantics for negation features found in XSB. On
receiving an ACL message with content in RDF or OWL, a TAGA
agent parses the content into triples, which are then loaded into the
XSB engine for processing.

86

The message’s meaning (communicative act, protocol, content
language, ontologies and context) all play a part in the interpretation.
For example, receiving a query message using query protocol, the
agent searches its knowledge base for matching answers and
returns an appropriate inform message. TAGA uses multiple models
to reflect the multiple namespace and ontologies in the system. The
agent treats each ontology as an independent Model in XSB engine.
The support of ontology sharing and exchanging is achieved by
defining a set of ontology related actions:

• NewInstance: this message creates an instance using the
specified ontology and the provided instance data;

• OntologyQuery: this message queries other agents about the
terms defined in their ontology;

• OntologyShare: this inform message is about the ontology
definition, which include Class/Property definition, Class-
Subclass relation and Class-Property relation.

• OntologyRelation: this message is about the conversion and
relations among class or property term defined different
ontologies. For example, agent A informs agent B that the
class Person is same class as the class Human used by agent
B. The relations include extension, identical and equivalent.
This message can be an inform message informing other
agents about the relation, or query message asking to confirm
the relation, or request message asking to translate the
ontology term used in multiple ontologies.

3.4 Query Support
Among the most important communicative acts used by agents are
those designed to support querying. The FIPA ACL has a very
simple query model supporting just two acts -- query-if and query-
ref – but allows a more complicated query to be encoded as a
request act. In order to use semantic web languages for ACL
content, we have experimented with the integration of a number of
RDF based approaches, including DQL, RQL, RDQL, Triple, and
TAP. Since a consensus query system has not yet emerged, we
have adopted an approach in which agents can use any of several
query systems and associated protocols. An agent specifies the
query languages and protocols it understands as part of its basic
service description. Other agents who intend to submit query to this
agent are expected to encode the query string in one of the support
languages. Table 2 is a query and answer example using RDQL
language.

Table 2: Query and answer example

Query:

<fipaowl:Query rdf:ID=”query1”>

 <fipaowl:queryLanguage>rdql</fipaowl:queryLanguage>

 <fipaowl:question>

“SELECT ?x,?y

FROM <people.rdf>

WHERE (?x,<dt:friend>,?y),(?y,<dt:friend>,?x)

AND ?x<^gt;?y

USING dt for <http://foo.org#>, rdf for
http://www.w3.org/1999/02/22-rdf-syntax-ns#”

 </fipaowl:question>

 <fipaowl:result_number>10</fipaowl:result_number>

 </fipaowl:Query >

Answer:

<fipaowl:Query rdf:about=”query1”>

 <fipaowl:queryLanguage>rdql</fipaowl:queryLanguage>

 <fipaowl:result_number>1</fipaowl:result_number>

 <fipaowl:answer>

“Array ([0] => Array ([?x] =>
http://foo.org/persons/Carl [?y] =>
http://foo.org/persons/Peter) [1] => Array
([?x] => http://foo.org/persons/Peter [?y]
=> http://foo.org/persons/Carl))”

 </fipaowl:answer>

 </fipaowl:Query>

We have found that the basic framework of FIPA standards
support this approach well by having a good set of primitive
communicative acts, a way for agents to define communication
protocols, and a sound mechanism by which agents can describe
their capabilities and the supporting services. We are planning to
experiment with adding mediator agents to TAGA that offer a query
translation service. Such an agent would be able to handle several
kinds of query languages permitting it to act as a proxy. For
example, agent A might wish to ask a DQL query of agent B, which
only understands RQL. A query translation service able to process
both DQL and RQL could provide the mediation service – receiving
a DQL query from A, sending appropriate RQL queries to B,
accepting the response, and reformulating to fit the DQL protocol.

4. DISCUSSION
In this section we will briefly discuss several additional design issues
we have addressed in TAGA.

Ontologies. In addition to the FIPA content language ontology, we
have defined two domain ontologies in OWL. The first is a travel
ontology that covers the basic concepts of traveling needed in
TAGA, include the travel itinerary, customers, travel services and
service reservations. The second ontology is one for auctions. This
ontology is used to define the different kinds of auctions, the roles
the participants play in them, and the protocols used.

Service description and matching. FIPA agents are associated
with one or more FIPA platforms, each of which offers a set of
agent services including a Directory Facility (DF) agent that handles
service registration, deregistration and matching. When an agent
registers a service in a DF, it provides service information like the
service type and owner. However, more specific service
information may also be useful when searching for agent services.
For example, a customer may want a booking in a hotel with at least
three star rating, is close to public transportation, offers breakfast,
and accepts VISA card payments. This can be achieved with the
use of DAML-S [DAML-S, 2002] profile. In TAGA, every travel
service provider describes its service process model with DAML-S
language and publishes it as a web page. This covers basic service
information like address, phone number and service interface
information. For example, a hotel may describe booking service as:
customer name, payment methods, travel date as input; reserve

87

number as output; the effect of booking is one room occupied at the
travel date. The travel agent, who is responsible for organizing
travel package, is able to contact with customer agent and related
service agents and finds the best match. First the travel agent loads
the DAML-S parsing rule and planning rules into its XSB reasoning
engine. It then loads service agents’ DAML-S profiles and
customer’s personal profile. The best matching service providers
are selected and a most profitable travel package is composed
dynamically.

Implementation comments. The original Trading Agent
Competitions relied on a few centralized market servers to handle
all interactions and coordination, including service discovery, agent
communication, coordination, and game control. In contrast, the
TAGA framework uses a distributed peer-to-peer approach based
on standard agent languages, protocols and infrastructure
components (FIPA, Agentcities), emerging standards for
representing ontologies, knowledge and services (RDF, OWL,
DAML-S) and web infrastructure (e.g., Sun’s Java Web Start).
Several FIPA pla tform implementations are currently used within
TAGA, including Jade and AAP (April Agent Platform),
demonstrating agent interoperability. Our current demonstration
system allows new users to dynamically join a running game at any
time. A dummy agent implemented in JADE can be downloaded
and run to instantiate a new TA agent. A simple GUI allows the
user to set operating parameters or the java code can be modified or
extended. A set of web based monitoring services allow one to see
the status of a game, examine messages being sent, lookup the
reputation of agents, etc.

Contribution. We see two main contributions in our work. First,
TAGA provides a rich framework for exploring agent-based
approaches to e-commerce like applications. Our current
framework allows users to create their own agent (perhaps based
on our initial prototype) to represent a TA or SA and to include it in
a running game where it will compete with other system provided
and user defined agents. We hope that this might be a useful
teaching and learning tool, not only for multi-agent systems
technology, but also for the semantic web languages RDF and
OWL and their use in agent based systems. Secondly, we hope that
TAGA will be seen as a flexible, interesting and rich environment
for simulating agent-based trading in dynamic markets. Agents can
be instantiated to represent customers, aggregators, wholesalers,
and service provides all of which can make decisions about price
and purchase strategies based on complex strategies and market
conditions. Moreover, simulations like TAGA encourage exploring
aspects of e-commerce that go beyond auction theory. TA agents
might compete on their ability to better understand the descriptions
of services sought and services offered and the basic models of the
preferences of their users in order to best satisfy the needs of their
clients. These descriptions, of course, will be in a semantic web
language like OWL.

5. Conclusions and future work
Travel Agent Game in Agentcities (TAGA) is a framework that
extends and enhances the Trading Agent Competition (TAC)
system to work in Agentcities, an open multiagent systems
environment of FIPA compliant systems. We hope that TAGA will
serve as an experimental test-bed for several communities of users.

First, it provides an environment, which can be used to explore
aspects of multiagent systems technology based on the mature,
published FIPA standards. Research on multiagent systems
technology is best done with in a rich yet easily understood problem
domain. We have found that the travel agent scenario as originally
put forth by TAC provides both the richness as well as accessibility,
especially when opened up to be peer-to-peer. We are using
TAGA as a test-bed for research on the use of semantic web
languages (e.g., RDF and OWL) as content languages and as
service description languages. Future work is planned in adding
more sophisticated negotiation and ontology mapping to our TAGA
environment.

Second, we hope that TAGA could serve as an interesting
framework and test-bed for experiments with automated markets
and trading. By adding autonomous service provide agents (e.g., for
hotels) one could experiment with a dynamic market with both
“shopbots” and “pricebots” or investigate the role of intermediation
in the form of agents performing a wholesale function.

Third, we hope that others will find TAGA useful as a test,
demonstration and teaching environment, both in technology classes
focused multi-agent systems, FIPA standards or the semantic web
and in business or e-commerce classes focused on automating
commerce and trading, auctions or agent-based simulations.

The Agentcities project is exploring the delivery and use of agent-
based services in an open, dynamic and international setting. We
are working to increase the integration of TAGA and emerging
Agentcities components and infrastructure and will include agents
running on handheld devices using LEAP.

6. REFERENCES
[Bothelo 2002] L. Bothelo, S. Willmott, T. Zhang, J. Dale, A review
of Content Languages Suitable for Agent-Agent Communication,
EPFL I&C Technical Report #200233.

[Dale, 2002] J. Dale, S. Willmot, and B.Burg: Agentcities:
Challenges and Deployment of Next-Generation Service
Environments. Proc. Pacific Rim Intelligent Multi-Agent Systems,
Tokyo, Japan, August 2002.

[DAML-S, 2002] The DAML Services Coalition (alphabetically
Anupriya Ankolenkar, Mark Burstein, Jerry R. Hobbs, Ora Lassila,
David L. Martin, Drew McDermott, Sheila A. McIlraith, Srini
Narayanan, Massimo Paolucci, Terry R. Payne and Katia Sycara):
DAML-S: Web Service Description for the Semantic Web, The
First International Semantic Web Conference (ISWC), Sardinia
(Italy), June, 2002.

[Dean, 2002] M. Dean and Guus Schreiber (eds): OWL Web
Ontology Language 1.0 Reference. W3C Working Draft.

[Greenwald, 2001] Amy Greenwald and Peter Stone: Autonomous
Bidding Agents in the Trading Agent Competition, IEEE Internet
Computing, March/April 2001.

[Greenwald, 2003] Amy Greenwald (ed.). The 2002 trading agent
competition: An overview of agent strategies. AI Magazine, to
appear

[Sagonas, 1994] Kostantinos Sagonas, Terrance Swift, and David S.
Warren: XSB as an efficient deductive database engine, In ACM
Conference on Management of Data (SIGMOD), 1994.

88

 [Stone, 2000] Peter Stone and Amy Greenwald: The First
International Trading Agent Competition: Autonomous Bidding
Agents, Electronic Commerce Research Journal pp1-36, 2000.

 [Wellman, 2002] Michael P. Wellman, Amy Greenwald, Peter
Stone, and Peter R. Wurman: The 2001 Trading Agent Competition,
Fourteenth Innovative Applications of Artificial Intelligence
Conference (IAAI-2002), pp935-941, Edmonton, August 2002.

[Willmott, 2001] Willmott, S., Dale, J., Burg, B., Charlton, P. and
O'Brien, P., Agentcities: A Worldwide Open Agent Network. In:
AgentLink News, Issue 8, November 2001.

[Yang, 2000] Guizhen Yang and Michael Kifer. FLORA:
Implementing an efficient DOOD system using a tabling logic
engine. Proceedings of Computational Logic --- CL-2000, number
1861 in LNAI, pp 1078--1093. Springer, July 2000.

[Zou, 2003] Youyong Zou, Tim Finin, Li Ding, Harry Chen, and
Rong Pan, TAGA: Trading Agent Competition in Agentcities,
Workshop on Trading Agent Design and Analysis, held in
conjunction with the Eighteenth International Joint Conference on
Artificial Intelligence, Monday, 11 August, 2003, Acuulco MX.

89

F-OWL: an Inference Engine for the Semantic Web 1

Youyong Zou, Tim Finin and Harry Chen

Computer Science and Electrical Engineering
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore MD 21250

{yzou1,finin, hchen4 }@cs.umbc.edu

Abstract. Understanding and using the data and knowledge encoded in seman-
tic web documents requires an inference engine. F-OWL is an inference engine
for the semantic web language OWL language based on F-logic, an approach to
defining frame-based systems in logic. F-OWL is implemented using XSB and
Flora-2 and takes full advantage of their features. We describe how F-OWL
computes ontology entailment and compare it with other description logic
based approaches. We also describe TAGA, a trading agent environment that
we have used as a test bed for F-OWL and to explore how multiagent systems
can use semantic web concepts and technology.

1 Introduction

The central idea of the Semantic Web [Berners-Lee 2001] is to publish documents on
the World Wide Web defined and linked in a way that make them both human
readable and machine understandable. Human readable means documents in the
traditional sense which are intended for machine display and human consumption.
Machine understandable means that the data has explicitly been prepared for machine
reasoning and reuse across various applications. Realizing the semantic web vision
requires well defined languages that can model the meaning of information on the
Web as well as applications and services to publish, discover, process and annotate
information encoded in them. This involves aspects from many areas, including
knowledge representation and reasoning, databases, information retrieval, digital
libraries, multi-agent systems, natural language processing and machine learning. The
Web Ontology Language OWL [Patel-Schneider, 2003] is part of the growing stack
of W3C recommendations related to the Semantic Web. OWL has its origins in
DAML+OIL [Hendler 2000] and includes a set of three increasingly complex sub-
languages: OWL-Lite, OWL-DL and OWL-Full.

OWL has a model-theoretic semantics that provides a formal meaning for OWL
ontologies and instance data expressed in them. In addition, to support OWL-Full, a

1 This work was partially supported by the Defense Advanced Research Projects Agency
under contract F30602-97-1-0215 and by the National Science Foundation under award IIS-
0242403.

90

second model-theoretic semantics has been developed as an extension to the RDF's
semantics, grounding the meaning of OWL ontologies as RDF graphs. An OWL
inference engine’s core responsibilities are to adhere to the formal semantics in proc-
essing information encoded in OWL, to discover possible inconsistencies in OWL
data, and to derive new information from known information. A simple example
demonstrates the power of inference: Joe is visiting San Francisco and wants to find
an Italian restaurant in his vicinity. His wireless PDA tries to satisfy his desire by
searching for a thing of type restaurant with a cuisineType property with the value
Italian. The goodPizza restaurant advertises its cuisine type as Pizza. These cannot
be matched as keywords or even using a thesaurus, since Italian and Pizza are not
equivalent in all contexts. The restaurant ontology makes things clearer: Pizza
rdfs:SubClassOf ItalianCuisine. By using an inference engine, Joe’s PDA can suc-
cessfully determine that the restaurant goodPizza is what he is looking for. F-OWL,
an inference engine for OWL language, is designed to accomplish this task.

In the next section, we outline the functional requirement of the OWL inference
engine. Section three describes F-OWL, the OWL inference engine in Frame Logic
that we have developed. Section four explained how F-OWL is used in a multi-agent
test bed for trading agents. Chapters five and six conclude this paper with a discus-
sion of the work and results and an outline of some potential future research.

2 OWL Engine

An inference engine is needed for the processing of the knowledge encoded in the
semantic web language OWL. An OWL inference engine should have following
features:

• Checking ontology consistency. An OWL concept ontology (e.g., terms de-
fined in the “Tbox”) imposes a set of restrictions on the model graph. The
OWL inference Engine should check the syntax and usage of the OWL terms
and ensure that the OWL instances (e.g., assertions in the “Abox”) meet all of
the restrictions.

• Computing entailments. Entailment, including satisfiability and subsumption,
are essential inference tasks for an OWL inference engine.

• Processing queries. OWL inference engines need powerful, yet easy-to-use,
language to support queries, both from human users (e.g., for debugging) and
software components (e.g., for software agents).

• Reasoning with rules. Rules can be used to control the inference capability, to
describe business contracts, or to express complex constrictions and relations
not directly supported by OWL. An OWL inference engine should provide a
convenient interface to process rules that involve OWL classes, properties and
instance data.

• Handling XML data types. XML data types can be used directly in OWL to
represent primitive kinds of data types, such as integers, floating point num-
bers, strings and dates. New complex types can be defined using base types

91

and other complex types. An OWL inference Engine must be able to test the
satisfiability of conjunctions of such constructed data types.

The OWL language is rooted in description logic (DL), a family of knowledge rep-

resentation languages designed for encoding knowledge about concepts and concept
hierarchies. Description Logics are generally given a semantics that make them sub-
sets of first-order logic. Therefore, several different approaches based on those logics
have been used to design OWL inference engines:

• Using a specialized description logic reasoner. Since OWL is rooted in de-

scription logic, it is not surprising that DL reasoners are the most widely used
tools for OWL reasoning. DL reasoners are used to specify the terminological hi-
erarchy and support subsumption. It has the advantage of being decidable. Three
well-known systems are FaCT [Horrocks, 1999], Racer [Haarslev 2001] and Pel-
let. They implement different types of description logic. Racer system imple-
ments SHIQ(D) using a Tableaux algorithm. It is a complete reasoner for OWL-
DL and supports both Tbox and Abox reasoning. The FaCT system implements
SHIQ, but only support Tbox reasoning. Pellet implements SHIN(D) and in-
cludes a complete OWL-lite consistency checker supporting both Abox and Tbox
queries.

• Using full first order logic (FOL) theorem prover. OWL statements can be
easily translated into FOL, enabling one to use existing FOL automated theorem
provers to do the inference. Examples of this approach include Hoolet (using the
Vampire [Riazanov, 2003] theorem prover) and Surnia (using Otter theorem
prover). In Hoolet, for example, OWL statements are translated into a collection
of axioms which is then given to the Vampire theorem prover for reasoning.

• Using a reasoner designed for a FOL subset. A fragment of FOL and general
logic based inference engine can also be used to design the OWL inference en-
gine. Horn Logic is most-widely used because of its simplicity and availability of
tools, including Jena, Jess, Triple and F-OWL (using XSB). Other logics, like
higher-order logic in F-OWL (using Flora), can also be used.

As the following sections describe, F-OWL has taken the third approach. An ob-

vious advantage is that many systems have been developed that efficiently reason
over expressive subsets of FOL and are easy to understand and use.

3 F-OWL

F-OWL is a reasoning system for RDF and OWL that is implemented using the XSB
logic programming system [Sagonas, 1994] and the Flora-2 [Kifer, 1995] [Yang
2000] extension that provides an F-logic frame-based representation layer. We have
found that XSB and Flora-2 not only provide a good foundation in which to imple-
ment an OWL reasoner but also facilitate the integration of other reasoning mecha-
nisms and applications, such as default reasoning and planners.

92

XSB is a logic programming system developed at Stony Brook University. In addi-

tion to providing all the functionality of Prolog, XSB contains several features not
usually found in Logic Programming systems, including tabling, non-stratified nega-
tion, higher order constructs, and a flexible preprocessing system. Tabling is useful
for recursive query computation, allowing programs to terminate correctly in many
cases where Prolog does not. This allows, for example, one to include “if and only if”
type rules directly. XSB supports for extensions of normal logic programs through
preprocessing libraries including a sophisticated object-oriented interface called
Flora-2. Flora-2 is itself a compiler that compiles from a dialect of Frame logic into
XSB, taking advantage of the tabling, HiLog [Chen 1995] and well-founded seman-
tics for negation features found in XSB. Flora-2 is implemented as a set of run-time
libraries and a compiler that translates a united language of F-logic and HiLog into
tabled Prolog code. HiLog is the default syntax that Flora-2 uses to represent function
terms and predicates. Flora-2 is a sophisticated object-oriented knowledge base lan-
guage and application development platform. The programming language supported
by Flora-2 is a dialect of F-logic with numerous extensions, which include a natural
way to do meta-programming in the style of HiLog and logical updates in the style of
Transaction Logic. Flora-2 was designed with extensibility and flexibility in mind,
and it provides strong support for modular software design through its unique feature
of dynamic modules.

F-OWL is the OWL inference engine that uses a Frame-based System to reason
with OWL ontologies. F-OWL is accompanied by a simple OWL importer that reads
an OWL ontology from a URI and extracts RDF triples out of the ontology. The ex-
tracted RDF triples are converted to format appropriate for F-OWL’s frame style and
fed into the F-OWL engine. It then uses flora rules defined in flora-2 language to
check the consistency of the ontology and extract hidden knowledge via resolution.

A model theory is a formal theory that relates expressions to interpretation. The
RDF model theory [Hayes 2003] formalizes the notion of inference in RDF and pro-
vides a basis for computing deductive closure of RDF graphs. The semantics of
OWL, an extension of RDF semantics, defines bindings, extensions of OWL interpre-
tations that map variables to elements of the domain:

• The vocabulary V of the model is composed of a set of URI’s.
• LV is the set of literal values and XL is the mapping from the literals to LV.
• A simple interpretation I of a vocabulary V is defined by:
• A non-empty set IR of resources, called the domain or universe of I.
• A mapping IS from V into IR
• A mapping IEXT from IR into the power set of IR X (IR union LV) i.e. the set

of sets of pairs <x,y> with x in IR and y in IR or LV. This mapping defines the
properties of the triples. IEXT(x) is a set of pairs which identify the arguments
for which the property is true, i.e. a binary relational extension, called the ex-
tension of x.

93

Informally this means that every URI2 represents a resource that might be a page
on the Internet but not necessarily; it might also be a physical object. A property is a
relation; this relation is defined by an extension mapping from the property into a set.
This set contains pairs where the first element of a pair represents the subject of a
triple and the second element represents the object of a triple. With this system of
extension mapping the property can be part of its own extension without causing
paradoxes.

Take the triple:goodPizza :cuisineType :Pizza from the pizza restaurant in the in-
troduction as example. In the set of URI’s there will be terms (i.e., classes and prop-
erties) like: #goodPizza, #cuisineType, #pizza, #Restanrant, #italianCuisine, etc.
These are part of the vocabulary V. The set IR of resources include instances that
represent resources on the internet or elsewhere, like #goodPizza, , etc. For example
the class #Restanrant might represent the set of all restaurants. The URI refers to a
page on the Internet where the domain IR is defined. Then there is the mapping IEXT
from the property #cuisineType to the set {(#goodPizza, #Pizza),(#goodPizza, #Ital-
ianCuisine)} and the mapping IS from V to IR: :goodPizza #goodPizza,
:cuisineTYpe #cuisineType.

A rule A B is satisfied by an interpretation I if and only if every binding that sat-
isfies the antecedent A also satisfies the consequent B. An ontology O is satisfied by
an interpretation I if and only if the interpretation satisfies every rules and facts in the
ontology. A model is satisfied if none of the statements within contradict each other.
An ontology O is consistent if and only if it is satisfied by at least one interpretation.
An ontology O2 is entailed by an ontology O1 if and only if every interpretation that
satisfies O1 also satisfies O2.

One of the main problems in OWL reasoning is ontology entailment. Many OWL
reasoning engines, such as Pellet and SHOQ, follow an approach suggested by Ian
Horrocks [Horrocks 2003]. By taking advantage of the close similarly between OWL
and description logic, the OWL entailment can be reduced to knowledge base satisfi-
ability in the SHOIN(D) and SHIF(D). Consequently, existing mature DL reasoning
engines such as Racer [Haarslev 2001] can provide reasoning services to OWL. Ora
Lassila suggested a “True RDF processor” [Lassila 2002] in his implementation of
Wilbur system [Lassila 2001] in which entailment is defined via the generation of a
deductive closure from an RDF graph composed of triples. The proving of entailment
becomes the building and searching of closure graph.

With the support of forward/backward reasoning from XSB and frame logic from
Flora, F-OWL takes the second approach to compute the deductive closure of a set of
RDF or OWL statements. The closure is a graph consisting of every triples <subject,
predicate, object> that satisfies {subject, object } ⇒ IEXT(I(predicate)). This is de-
fined as:

<subject,predicate,object> ⇒ KB ⇔ {subject,object} ⇒ IEXT(I(predicate))

2 The W3C says of URIs: “Uniform Resource Identifiers (URIs, aka URLs) are short strings

that identify resources in the web: documents, images, downloadable files, services, elec-
tronic mailboxes, and other resources.” By convention, people understand many URIs as de-
noting objects in the physical world.

94

Where KB is the knowledge base, I(x) is the interpretation of a particular graph, and
IEXT(x) is the binary relational extension of property as defined in [Hayes 2002].

F-OWL is written in the Flora-2 extension to XSB and consists of the following
major sets of rules:

• A set of rules that reasons over the data model of RDF/RDF-S and OWL;
• A set of rules that maps XML DataTypes into XSB terms;
• A set of rules that performs ontology consistency checks; and
• A set of rules that provides an interface between the upper Java API calls to the

lower layer Flora-2/XSB rules.

F-OWL provides command line interface, a simple graphical user interface and a
Java API to satisfy different requirements. Using F-OWL to reason over the ontology
typically consists of the following four steps:

• Loading additional application-related rules into the engine;
• Adding new RDF and OWL statements (e.g., ontologies or assertions) to the en-

gine. The triples (subject, predicate, object) on the OWL statements are translated
into 2-ply frame style: subject(predicate, object)@model;

• Querying the engine. The RDF and OWL rules are recursively applied to gener-
ate all legal triples. If a query has no variables, a True answer is returned when
an interpretation of the question is found. If the question includes variable, the
variables is replaced with values from the interpretation and returned;

• The ontology and triples can be removed if desired. Else, the XSB system saves
the computed triples in indexed tables, making subsequent queries faster.

4 F-OWL in TAGA

Travel Agent Game in Agentcities (TAGA) [Zou 2003] is a travel market game de-
veloped on the foundation of FIPA technology and the Agentcities infrastructure. One
of its goals is to explore and demonstrate how agent and semantic web technology
can support one another and work together.

TAGA extends and enhances the Trading Agent Competition scenario to work in
Agentcities, an open multiagent systems environment of FIPA compliant systems.
TAGA makes several contributions: auction services are added to enrich the Agent-
cities environment, the use of the semantic web languages RDF and OWL improve
the interoperability among agents, and the OWL-S ontology is employed to support
service registration, discovery and invocation. The FIPA and Agentcities standards
for agent communication, infrastructure and services provide an important foundation
in building this distributed and open market framework. TAGA is intended as a plat-
form for research in multiagent systems, the semantic web and/or automated trading
in dynamic markets as well as a self contained application for teaching and experi-
mentation with these technologies. It is running as a continuous open game at

95

http://taga.umbc.edu/ and source code is available on Sourceforge for research and
teaching purposes.

The agents in TAGA use OWL in various ways in communication using the FIPA
agent content language (ACL) and also use OWL-S as the service description lan-
guage in FIPA’s directory facilitators. Many of the agents in the TAGA system use F-
OWL directly to represent and reason about content presented in OWL. On receiving
an ACL message with content encoded in OWL, a TAGA agent parses the content
into triples, which are then loaded into the F-OWL engine for processing.

When an agent receives an incoming ACL message, it computes the meaning of
the message from the ACL semantics, the protocols in effect, the content language
and the conversational context. The agent’s subsequent behavior, both internal (e.g.,
updating its knowledge base) and external (e.g., generating a response) depends on
the correct interpretation of the message’s meaning. Thus, a sound and, if possible,
complete understanding the semantics of the key communication components (i.e.,
ACL, protocol, ontologies, content language, context) is extremely important. In
TAGA, the service providers are independent and autonomous entities, which making
it difficult to enforce a design decision that all use exactly the same ontology or pro-
tocol. For example, the Delta Airline service agent may have its own view of travel
business and uses class and property terms that extend an ontology used in the indus-
try. This situation parallels that for the semantic web as a whole – some amount of
diversity is inevitable and must be panned for lest our systems become impossibly
brittle.

Many of the agents implemented in TAGA system use F-OWL to represent and
reason about the message content presented in RDF or OWL. Upon receiving an
ACL message with content in RDF or OWL, a TAGA agent parses the content into
triples, which are then loaded into the FOWL engine for processing.

The message’s meaning (communicative act, protocol, content language, ontolo-
gies and context) all play a part in the interpretation. For example, when an agent
receives a query message that uses the query protocol, the agent searches its knowl-
edge base for matching answers and returns an appropriate inform message. TAGA
uses multiple models to reflect the multiple namespaces and ontologies used in the
system. The agent treats each ontology as an independent model in the F-OWL en-
gine.

F-OWL has many usages in TAGA, including the following.

• As knowledge base. Upon receiving an ACL message with content encoded in

OWL, agents in TAGA parse the content into triples and feeds them into their F-
OWL engine. The information can be easily retrieved by submitting queries in
various query languages.

• As reasoning engine. The agent can answer more questions with the help of F-
OWL engine, for example, the restaurant can answer the question “what is the
average price of a starter” after it understands that “starter” is sameAs “appe-
tizer”.

• As a service matchmaker. FIPA platforms provide a directory facilitator ser-
vice which matches service requests against descriptions of registered services.
We have extended this model by using OWL-S as a service description language.

96

F-OWL manages the service profiles and tries to find the best match based on de-
scription in the service request.

• As an agent interaction coordinator. The interaction protocol can be encoded
into an ontology file using OWL language. F-OWL will advise the agents what
to respond based on received messages and context.

5 Discussion

This section describes the design and implementation of F-OWL, an inference engine
for OWL language. F-OWL uses a Frame-based System to reason with OWL ontolo-
gies. F-OWL supports consistency checking of the knowledge base, extracts hidden
knowledge via resolution and supports further complex reasoning by importing rules.
Based on our experience in using F-OWL in several projects, we found it to be a fully
functional inference engine that was relatively easy to use and able to integrate with
multiple query languages and rule languages.

There have been lots of works on the OWL inference engine, from semantic web
research community and description logic community. The following table compares
F-OWL with some of them:

Table 1: Comparison of F-OWL and other OWL Inference Engine

 F-OWL Racer FaCT Pellet Hoolet Surnia Triple
Logic Horn,

Frame,
Higher
Order

Descript
ion

Logic

DL DL Full FOL Full FOL Horn
Logic

Support OWL-Full OWL-
DL

OWL-
DL

OWL-
DL OWL-DL OWL-

Full RDF

Based on XSB/Flor
a Lisp Lisp Java Vampire Otter XSB

XML
Datatype Yes Yes No Yes No No No

Decidable No Yes Yes Yes No No Yes
Complete
consistency
checker

No
Yes

(OWL-
Lite)

Yes
Yes(O
WL-
Lite)

No No No

Interface Java,
GUI,

Command
Line

DIG,
Java,
GUI

DIG,
Com-
mand
Line

DIG,
Java Java Python Java

Query Frame
style,

RDQL

Racer
query
lan-

guage

 RDQL
Horn
logic
style

Known
Limitation Poor

scaling No Abox
support Poor

scaling
Poor

scaling

Only
sup-
port
RDF

97

The first thing to notice in Table 1 is that the description logic based system can only
support reasoning over OWL-Lite and OWL-DL statements but not OWL-Full.
OWL-Full is a full extension of RDF, which needs the supporting of terminological
cycle. For example, a class in OWL-Full can also be an individual or property. The
cyclic terminological definitions can be recognized and understood in horn logic or
frame logic system.

Table 1 shows that only three DL-based owl inference engines, which are all use a
Tableau based algorithms [Baader 2000], are decidable and support complete consis-
tency checking (at least in OWL-Lite). However, [Balaban 1993] argues that DL only
forms a subset of F-Logic. The three kinds of formulae in the description logic can be
transformed into first class objects and n-ary relationships. F-Logic is able to provide
a full account for DL without losing any semantics and descriptive nature. We under-
stand that our current F-OWL approach is neither decidable nor complete. However, a
complete F-Logic based OWL-DL reasoner is feasible.

The table also shows that F-OWL system doesn’t scale well when dealing with
large datasets, because of the incompleteness of the reasoner. Actually, none of the
OWL inference engines listed here scales well when dealing with the OWL test case
wine ontology3 which defines thousands of classes and properties and a relatively
modest number of individuals. Further research is needed to improve the performance
and desirability.

Comparing with other OWL inference engines, F-OWL has several unique fea-
tures: tabling, support for multiple logical models or reasoning, and a pragmatic ori-
entation.

Tabling. XSB’s tabling mechanism gives F-OWL the benefits of a forward chain-
ing system in a backward chaining environment. The triples in a model are computed
only when the system needs to know whether or not they are in the model. Once it is
established that a triple is in the current model, it is added to the appropriate table,
obviating the need to prove that it is in the model again. This mechanism can have a
significant impact on the system’s performance. While the first few queries may take
a long time, subsequent queries tend to be very fast. This is an interesting compro-
mise between a typical forward-only reasoning system and backward-only reasoning
systems.

Multiple logics. F-OWL supports Horn logic, frame logic and a kind of higher-
order logic; all inherited from the underlying XSB and Flora substrates. Working
together, these logic frameworks improve F-OWL’s performance and capabilities. For
example, the F-logic supports non-monotonic (default) reasoning. Another example is
higher-order logic. The semantics of higher-order logics, in general, are difficult and
in many cases not suitable for practical applications. XSB’s Hilog, however, is a
simple syntactic extension of first-order logic in which variables can appear in the
position of a predicate. In many cases, this simplifies the expression of the state-
ments, rules and constraints, improving the writability and readability of F-OWL and
associated programs.

3 The wine ontology is used as a running example in the W3C's OWL Web Ontology Language

Guide and is available at http://www.w3.org/TR/owl-guide/wine.owl.

98

Pragmatic approach. The aim of F-OWL system is to be a practical OWL rea-
soner, not necessary a complete OWL reasoner. So F-OWL system provides various
interface to access the engine and supports multiple query and rule languages.
In the open web environment, it is generally assumed that the data are not complete
and not all facts are known. We will research how this fact affects the implementation
of inference engine. In the semantic web an inference engine may not necessarily
serve to generate proofs but should be able to check proofs. We will work on using F-
OWL to resolve trust and proof in semantic web.

In a stand-alone system inconsistencies are dangerous but can be controlled to a
certain degree. However, controlling the inconsistencies in the Semantic Web is a lot
more difficult. During the communication, ontology definition origin from other
agents, who is unknown beforehand, may be asserted. Therefore special mechanisms
are needed to deal with inconsistent and contradictory information in the Semantic
Web. There are two steps: detecting the inconsistency and resolving the inconsis-
tency.

The detection of the inconsistency is based on the declaration of inconsistency in
the inference engine. The restriction, which imposes the possible values and relation
that the ontology elements can have, leads to the inconsistency. For example,
owl:equivalentClass: imposes a restriction on the resource which the subject is same
class as. owl:disjointWith imposes a restriction on the resource which the subject is
different from. The triples (a owl:equivalentClass b) and (a owl:disjointWith b) is not
directly lead to an inconsistency until applying the detection rule: (A
owl:equivalentClass B) & (A owl:disjointWith B) inconsistency.

When inconsistencies are detected, Namespaces can help tracing the origin of the
inconsistencies. John posted “all dogs are human” at his web site, while “all dogs are
animal” appears in daml.org’s ontology library. It is clear that the second is more
trustable. Every web site are identified and treated unequivocally in the semantic web.
The inference engine contacts trust system to evaluate the creditability of the name-
spaces. [Klyne 2002] and [Golbeck 2003] enlist lots of works and brilliant ideas
about how to maintain the trust system in the semantic web. Once having the trust
evaluation result, the agent could take three different actions: (a) accept the one sug-
gested by the inference engine; (b) reject both as none of them is trustable; (c) ask the
human user to select.

6 Conclusion

This paper describes the design and implementation of F-OWL, an inference engine
for OWL language. F-OWL uses a Frame-based System to reason with OWL ontolo-
gies. F-OWL supports consistency checking, extracts hidden knowledge via resolu-
tion and supports further complex reasoning by importing rules. While using it in
TAGA user case, we find that F-OWL is a full functional inference engine and easy
to use with the support of multiple query languages and rule languages.

In the open web environment, it is generally assumed that the data are not com-
plete and not all facts are known. We will research how this fact affects the imple-
mentation of inference engine. In the semantic web an inference engine may not nec-

99

essarily serve to generate proofs but should be able to check proofs. We will work on
using F-OWL to resolve trust and proof in semantic web in the future.

References

[Baader 2000] Franz Baader and Ulrike Sattler: “An Overview of Tableau Algorithms for
Description Logics”, Proceeding of Tableau 2000, RWTH Achen.

[Balaban 1993] Mira Balaban: “The F-Logic Approach for Description Languages”, Ben-
Gurion University of Negev Technical Report FC-93-02, 1993.

 [Berners-Lee 2001] Tim Berners-Lee, James Hendler and Ora Lassila: ”The Semantic Web”,
Scientific America , May 2001.

[Chen 1995] Weidong Chen, Michael Kifer and David Warren: “Logical Foundations of Ob-
ject-Oriented and Frame-Based Languages”, Journal of ACM, May 1995.

[Golbeck 2003] Jennifer Golbeck, Bijan Parsia, and James Hendler: “Trust networks on the
semantic web”, Proceedings of Cooperative Intelligent Agents 2003, Helsinki, Finland, Au-
gust 2003.

[Haarslev 2001] Volker Haarslev and Ralf Moller: ”Racer system description”, Proceeding of
International Joint Conference on Automated Reasoning, Volume 2083, page 701-705,
Springer 2001

[Hayes 2003] Pat Hayes, RDF Semantics , W3C working Draft, 2003.
[Hendler 2000] James Hendler and Deborah L. McGuinness, “The DARPA Agent Markup

Language.” IEEE Intelligent Systems, Trends and Controversies, page. 6-7, Novem-
ber/December 2000.

[Horrocks, 1999] I. Horrocks. FaCT and iFaCT. In P. Lambrix, A. Borgida, M. Lenzerini, R.
Möller, and P. Patel-Schneider, editors, Proceedings of the International Workshop on De-
scription Logics (DL'99), pages 133-135, 1999.

[Horrocks, 2003] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. In Dieter Fensel, Katia Sycara, and John Mylopoulos, edi-
tors, Proc. of the 2003 International Semantic Web Conference (ISWC 2003), number 2870
in Lecture Notes in Computer Science, pages 17-29. Springer, 2003.

[Kifer, 1995] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. JACM, 42(4):741--843, Jul. 1995.

[Klyne 2002] G.Klyne: "Framework for Security and Trust Standards”, SWAD-Europe, De-
cember 2002.

[Lassila 2001] Ora Lassila: Enabling Semantic Web Programming by Integrating RDF and
Common lisp”, Proceeding of first Semantic Web Working Symposium, Stanford Univer-
sity, 2001.

[Lassila 2002] Ora Lassila: ”Taking the RDF Model Theory Out for a Spin”, First International
Semantic Web Conference (ISWC 2002), Sardinia (Italy), June 2002.

[Patel-Schneider 2003] Peter F. Patel-Schneider, Pat Hayes and Ian Horrocks, OWL Web
Ontology Language Semantics and Abstract Syntax, W3C working Draft, 2003.

[Riazanov, 2003] A.Riazanov, Implementing an Efficient Theorem Prover, PhD thesis, Uni-
versity of Manchester, 2003.

 [Sagonas, 1994] Kostantinos Sagonas, Terrance Swift, and David S. Warren: XSB as an effi-
cient deductive database engine, In ACM Conference on Management of Data (SIGMOD),
1994.

[Yang, 2000] Guizhen Yang and Michael Kifer. FLORA: Implementing an efficient DOOD
system using a tabling logic engine. Proceedings of Computational Logic --- CL-2000,
number 1861 in LNAI, pp 1078--1093. Springer, July 2000.

100

[Zou, 2003] Youyong Zou, Tim Finin, Li Ding, Harry Chen, and Rong Pan, TAGA: Trading
Agent Competition in Agentcities, Workshop on Trading Agent Design and Analysis, held
in conjunction with the Eighteenth International Joint Conference on Artificial Intelligence,
Monday, 11 August, 2003, Acapulco MX.

[Zou, 2004] Youyong Zou, Agent-Based Services for the Semantic Web, Ph.D. Dissertation,
University of Maryland, Baltimore County, August, 2004.

101

Papers produced

This is a list of papers that were partially supported by the project.

2005

Li Ding, Tim Finin, Anupam Joshi, Yun Peng, Rong Pan and Pavan Reddivari, Search on the
Semantic Web, IEEE Computer, October 2005. http://ebiquity.umbc.edu/paper/html/id/257/

Mark Burstein, Christoph Bussler, Tim Finin, Michael Huhns, Massimo Paolucci, Amit Sheth,
Stuart Williams and Michal Zaremba, A Semantic Web Services Architecture, IEEE Internet
Computing, pp 52-61, v9, n5, September/October 2005.
http://ebiquity.umbc.edu/paper/html/id/243/

Martin O'Connor, Holger Knublauch, Samson Tu, Benjamin N. Grosof, Mike Dean, William
Grosso, and Mark Musen, Supporting Rule System Interoperability on the Semantic Web with
SWRL". Proc. 4th International Semantic Web Conference (ISWC-2005), pp. 974-986, held
Galway, Ireland, Nov. 6-10, 2005. http://ebusiness.mit.edu/bgrosof/paps/swrl-editor-
iswc2005.pdf

Sumit Bhansali and Benjamin N. Grosof, Extending the SweetDeal Approach for E-Procurement
using SweetRules and RuleML". Proc. International Conference on Rules and Rule Markup
Languages for the Semantic Web (RuleML-2005), Galway, Ireland, Nov. 6-10, 2005.
http://ebusiness.mit.edu/bgrosof/paps/sweetdeal-procurement+sweetrules-ruleml2005.pdf

Li Ding, Rong Pan, Tim Finin, Anupam Joshi, Yun Peng and Pranam Kolari, Finding and Rank-
ing Knowledge on the Semantic Web, Proceedings of the 4th International Semantic Web Con-
ference, Galway IE, Nov. 2005. http://ebiquity.umbc.edu/paper/html/id/241/

Li Ding, Tim Finin, Anupam Joshi, Yun Peng, Paulo Pinheiro da Silva and Deborah McGuin-
ness, Tracking RDF Graph Provenance using RDF Molecules, poster paper, Proc. 4th Int. Se-
mantic Web Conf., Galway IE, Nov. 2005. http://ebiquity.umbc.edu/paper/html/id/263/

Akshay Java, Tim Finin and Sergei Nirenburg, Integrating Language Understanding Agents Into
the Semantic Web, First Int. Symposium on Agents and the Semantic Web, 2005 AAAI Fall
Symposium Series, Arlington VA, 4-6 November, 2005.
http://ebiquity.umbc.edu/paper/html/id/261/

Harry Chen, Filip Perich, Tim Finin and Anupam Joshi, The SOUPA Ontology for Pervasive
Computing, in Ontologies for Agents: Theory and Experiences, Valentina Tamma, Stephen Cra-
nefield, Tim Finin and Steven Willmott (Eds), Springer Verlag, June 2005.
http://ebiquity.umbc.edu/paper/html/id/238/

102

Tim Finin, Li Ding, Rong Pan, Anupam Joshi, Pranam Kolari, Akshay Java and Yun Peng,
"Swoogle: Searching for knowledge on the Semantic Web", Intelligent Systems Demonstration,
Proc. 20th National Conf. on Artificial Intelligence, July 2005.
http://ebiquity.umbc.edu/paper/html/id/223/

Tim Finin, Li Ding, Lina Zhou and Anupam Joshi, Social Networking on the Semantic Web,
Learning Organization Journal, v12, n5, pp 418-435, 2005.
http://ebiquity.umbc.edu/paper/html/id/222/

Shashidhara Ganjugunte, "Extending the Non-monotonic Reasoning Infrastructure for the Se-
mantic Web via Well-founded Negation and incremental Support for Courteous Logic Programs,
MS thesis, University of Maryland, Baltimore County, August 2005.

Pavan Reddivari, Tim Finin and Anupam Joshi, Policy based Access Control for a RDF Store,
Proc. Policy Management for the Web workshop (position paper), 14th Int. World Wide Web
Conf., pp 78-81, 10 May 2005, Chiba, Japan. http://ebiquity.umbc.edu/paper/html/id/219/

Li Ding, Pranam Kolari, Tim Finin, Anupam Joshi, Yun Peng and Yelena Yesha, On Homeland
Security and the Semantic Web: A Provenance and Trust Aware Inference Framework, poster
paper, AAAI Spring Symposium on AI Technologies for Homeland Security, 21-25 March 2005.
http://ebiquity.umbc.edu/paper/html/id/209/

Lalana Kagal and Tim Finin, Modeling Conversation Policies using Permissions and Obliga-
tions, in Developments in Agent Communication, Frank Dignum, Rogier van Eijk, Marc-
Philippe Huget (Eds), (Post-proceedings of the AAMAS Workshop on Agent Communication,
Springer-Verlag, LNCS, January, 2005.

Li Ding, Lina Zhou, Tim Finin and Anupam Joshi, How the Semantic Web is Being Used:An
Analysis of FOAF, Proc. 38th Int. Conf. on System Sciences, Digital Documents Track (The
Semantic Web: The Goal of Web Intelligence), Hawaii, January 2005.
http://ebiquity.umbc.edu/paper/html/id/184/

Tim Finin, James Mayfield, Anupam Joshi, R. Scott Cost and Clay Fink, Information Retrieval
and the Semantic Web, Proc. 38th Int. Conf. on System Sciences, Digital Documents Track (The
Semantic Web: The Goal of Web Intelligence), Hawaii, January 2005.
http://ebiquity.umbc.edu/paper/html/id/183/

2004

Youyong Zou, Tim Finin Harry Chen, F-OWL: an Inference Engine for Semantic Web, in Mi-
chael G. Hinchey, James L. Rash, Walter F. Truszkowski and Christopher A. Rouff (editors),
Formal Approaches to Agent Based Systems, (Proc. 3rd NASA/IEEE Workshop on Formal Ap-
proaches to Agent Based Systems, FAABS III, 16-18 April 2004, Greenbelt MD), Springer Ver-

103

lag Lecture Notes in Computer Science, v3228, December 2004.
http://ebiquity.umbc.edu/paper/html/id/203/

Aykut Firat, Stuart Madnick, and Benjamin N. Grosof, Contextual Alignment of Ontologies for
Semantic Interoperability, Proc. 14th Workshop on Information Technologies and Systems
(WITS-2004), pp. 200-205. Held in conjunction with the International Conference on Informa-
tion Systems (ICIS-2004), Washington, DC, Dec. 11-12, 2004.

Li Ding, Tim Finin and Anupam Joshi, Analyzing Social Networks on the Semantic Web, IEEE
Intelligent Systems (Trends and Controversies), v9, n1, Jan/Feb 2005.
http://ebiquity.umbc.edu/paper/html/id/202/

Harry Chen, Tim Finin, Anupam Joshi, Filip Perich, Dipanjan Chakraborty and Lalana Kagal,
Intelligent Agents Meet the Semantic Web in Smart Spaces, IEEE Internet Computing, v8, n6,
November/December, 2004. http://ebiquity.umbc.edu/paper/html/id/201/

Sumit Bhansali, Benjamin N. Grosof, and Stuart Madnick, Towards Ontological Context Media-
tion for Semantic Web Database Integration: Translating COIN Ontologies Into OWL, (Poster),
Proc. 3rd International Semantic Web Conference (ISWC-2004), Hiroshima, Japan, Nov. 7-11,
2004. http://ebusiness.mit.edu/bgrosof/paps/iswc2004-poster-paper.pdf

Lalana Kagal, Tim Finin and Anupam Joshi, Declarative Policies for Describing Web Service
Capabilities and Constraints, W3C Workshop on Constraints and Capabilities for Web Services,
October, 2004. http://ebiquity.umbc.edu/paper/html/id/193/

Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Joel Sachs, Vishal Doshi, Pavan
Reddivari and Yun Peng, Swoogle: A Search and Metadata Engine for the Semantic Web, Thir-
teenth ACM Conf. on Information and Knowledge Management (CIKM'04), Washington DC,
November 2004. http://ebiquity.umbc.edu/paper/html/id/182/

Tim Finin and Joel Sachs, Will the Semantic Web Change Science?, Science Next Wave, Sep-
tember 2004. http://ebiquity.umbc.edu/paper/html/id/189/

Benjamin N. Grosof and Terrence C. Poon, SweetDeal: Representing Agent Contracts With Ex-
ceptions using Semantic Web Rules, Ontologies, and Process Descriptions", International Jour-
nal of Electronic Commerce (IJEC), 8(4):61-98, Summer 2004.
http://ebusiness.mit.edu/bgrosof/paps/ijec-sweetdeal-exceptions-111903.pdf

Lalana Kagal, Massimo Paolucci, Naveen Srinivasan, Grit Denker, Tim Finin and Katia Sycara,
Authorization and Privacy for Semantic Web Services, IEEE Intelligent Systems (Special issue
on Semantic Web Services, pp 50-56, v19, n4 (July/August), 2004.
http://ebiquity.umbc.edu/paper/html/id/174/

104

Harry Chen, Filip Perich, Anupam Joshi and Tim Finin, SOUPA: Standard Ontology for Ubiqui-
tous and Pervasive Applications, Processing in Mobile Ad-Hoc Networks Proc. Int. Conf. on
Mobile and Ubiquitous Systems: Networking and Services, Boston, August 2004.

Lalana Kagal and Tim Finin, A Generic Model for Conversation Specifications and Policies
based on Permissions and Obligations, AAMAS 2004 Workshop on Agent Communication
(AC2004), July 2004. http://ebiquity.umbc.edu/paper/html/id/166/

Harry Chen, Filip Perich, Dipanjan Chakraborty, Tim Finin and Anupam Josh, Intelligent Agents
Meet Semantic Web in a Smart Meeting Room, The Third Int. Joint Conf. on Autonomous
Agents and Multi Agent Systems, New York, July 19-23 July, 2004.
http://ebiquity.umbc.edu/paper/html/id/156/

William Krueger, Jonathan Nilsson, Tim Oates and Tim Finin, Automatically Generated DAML
Markup for Semistructured Documents, in Agent Mediated Knowledge Management, Lecture
Notes in Artificial Intelligence, Luder van Elst, Virginia Dignum and Andreas Abecker (Eds.),
2004. (Revised version of 2003 workshop paper).

Harry Chen, Tim Finin and Anupam Joshi, Semantic Web in the Context Broker Architecture,
IEEE Conf. on Pervasive Computing and Communications (PerCom), Orlando, March, 2004.
http://ebiquity.umbc.edu/get/a/publication/76.pdf

Lalana Kagal, Massimo Paolucci, Naveen Srinivasan, Grit Denker, Tim Finin and Katia Sycara,
Authorization and Privacy for Semantic Web Services, AAAI 2004 Spring Symposium on Se-
mantic Web Services, Stanford, March 2004. http://umbc.edu/~finin/papers/AAAIaowl2004.pdf

Harry Chen, Tim Finin and Anupam Joshi, An ontology for context aware pervasive computing
environments, Knowledge Engineering Review - Special Issue on Ontologies for Distributed
Systems, Cambridge University Press, 2004. http://umbc.edu/~finin/papers/ker03a.draft.pdf

2003

Deepali Khushraj, Tim Finin and Anupam Joshi, Semantic Tuple Spaces: A Coordination Infra-
structure in Mobile Environments, poster paper, Second Int. Semantic Web Conf. (ISWC2003).
http://ebiquity.umbc.edu/paper/html/id/76/

Anugeetha Kunjithapatham, Mithun Sheshagiri, Tim Finin, Anupam Joshi and Yun Peng, Per-
sonal Agents on the Semantic Web, poster paper, Second Int. Semantic Web Conf. (ISWC2003).

Harry Chen, Tim Finin and Anupam Joshi, Semantic Web in a Pervasive Context-Aware Archi-
tecture, Workshop on Artifical Intelligence in Mobile Systems, the Fifth Annual Conf. on Ubiq-
uitous Computing, 12-15 Oct 2003, Seattle. http://umbc.edu/~finin/papers/ubicomp03-ai.pdf

105

James Mayfield and Tim Finin, Information retrieval on the Semantic Web: Integrating inference
and retrieval, SIGIR Workshop on the Semantic Web, Toronto, 1 August 2003.
http://umbc.edu/~finin/papers/sigir03.pdf

Grit Denker, Lalana Kagal, Tim Finin, Massimo Paoucci, Katia Sycara, Security for DAML Web
Serviced: Annotation and Matchmaking, Second Int. Semantic Web Conf. (ISWC2003), Sanibel
Island FL, October 2003. http://umbc.edu/~finin/papers/iswc03a.pdf

Lalana Kagal, Tim Finin and Anupam Joshi, A Policy Based Approach to Security for the Se-
mantic Web, Second Int. Semantic Web Conf. (ISWC2003), Sanibel Island FL, October 2003.
http://umbc.edu/~finin/papers/iswc03b.pdf

Li Ding, Lina Zhou, Tim Finin, Trust Based Knowledge Outsourcing for Semantic Web Agents,
2003 IEEE/WIC Int. Conf. on Web Intelligence (WI 2003), October 2003, Beijing.
http://umbc.edu/~finin/papers/wi03.pdf

Harry Chen, Tim Finin and Anupam Joshi, Using OWL in a Pervasive Computing Broker,
Workshop on Ontologies in Open Agent Systems, AAMAS 2003.
http://umbc.edu/~finin/papers/aamas03a.pdf

Youyong Zou, Tim Finin, Li Ding, Harry Chen and Rong Pan, Using Semantic Web technology
in Multi-Agent Systems: a case study in the TAGA trading agent environment 5th Int. Conf. On
Electronic Commerce: Technologies, Pittsburg, 1-3 October 2003.

Mithun Sheshagiri, Marie desJardins, Tim Finin, A Planner for Composing Service Described in
DAML-S, Workshop on Web Services and Agent-based Engineering, AAMAS, July 20003.
http://umbc.edu/~finin/papers/aamas03b.pdf

Harry Chen, Tim Finin and Anupam Joshi, An ontology for a context aware pervasive computing
environment, IJCAI workshop on ontologies and distributed systems, IJCAI'03, August, 2003,
Acapulco MX. http://umbc.edu/~finin/papers/ijcai03-ont.pdf

Youyong Zou, Tim Finin, Li Ding, Harry Chen and Rong Pan, TAGA: Trading Agent Competi-
tion in Agentcities, Workshop on Trading Agent Design and Analysis, held in conjunction with
the Eighteenth Int. Joint Conf. on Artificial Intelligence, 11 August, 2003, Acuulco MX.
http://umbc.edu/~finin/papers/tagaijcaidraft.pdf

Mithun Sheshagiri, Marie desJardins, Tim Finin, A Planner for Composing Service Described in
DAML-S, Workshop on Planning for Web Services, Int. Conf. on Automated Planning and
Scheduling, Trento, July 2003. http://umbc.edu/~finin/papers/icaps03.pdf

Lalana Kagal, Tim Finin and Anupam Joshi, A Policy Language for Pervasive Systems, Fourth
IEEE Int. Workshop on Policies for Distributed Systems and Networks, Lake Como, 4-6 June,
2003. http://umbc.edu/~finin/papers/policy03.pdf

106

William Krueger, Jonathan Nilsson, Tim Oates and Tim Finin, Automatically Generated DAML
Markup for Semistructured Documents, AAAI Spring Symposium 2003 on Agent-Mediated
Knowledge Management (AMKM), 24-26 March, 2003, Palo Alto, California.
http://umbc.edu/~finin/papers/AAAISS03.pdf

2002

Tim Finin and Anupam Joshi, Agents, Trust and Information Access on the Semantic Web,
SIGMOD Record, v31, n4, December 2002.
http://www.acm.org/sigmod/record/issues/0212/SPECIAL/5.Finin.pdf

Subhash Kumar, Anugeetha Kunjithapatham, Mithun Sheshagiri, Tim Finin, Anupam Joshi, Yun
Peng and R. Scott Cost, A personal agent application for the semantic web, AAAI Fall Sympo-
sium on Personalized Agents, North Falmouth, Nov 15-17, 2002.
http://umbc.edu/~finin/papers/aaaiss03.pdf

Urvi Shah, Tim Finin Anupam Joshi, R. Scott Cost and James Mayfield, Information Retrieval
on the Semantic Web, 10th Int. Conf. on Information and Knowledge Management, November
2002. http://umbc.edu/~finin/papers/cikm02/cikm02.pdf

William Krueger, Jonathan Nilsson, Tim Oates and Tim Finin, Automatically Generated DAML
Markup for Semistructured Documents, National Science Foundation Workshop on Next Gen-
eration Data Mining, Baltimore, November 2002.
http://umbc.edu/~finin/papers/ngdm02/ngdm02.pdf

Lalana Kagal, Tim Finin and Anupam Joshi, Developing Secure Agent Systems Using Delega-
tion Based Trust Management, Second Int. Workshop on Security of Mobile Multiagent Systems
(SEMAS-2002), Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems, pp. 27-34,
Bologna, 15-19 July 2002. http://umbc.edu/~finin/papers/semas02/semas02/semas02.pdf

Sushama Prasad, Yun Peng and Tim Finin, Using Explicit Information To Map Between Two
Ontologies, Workshop on Ontologies in Agent Systems, First Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, Bologna, 15-19 July 2002.

Benjamin Grosof, Mahesh Gandhe and Tim Finin, SweetJess: Translating DamlRuleML to Jess,
Proc. Int. Workshop on Rule Markup Languages for Business Rules on the Semantic Web, First
Int. Semantic Web Conf. (ISWC2002), 14 June 2002, Sardinia.
http://umbc.edu/~finin/papers/iscw02/

Sushama Prasad, Yun Peng and Timothy Finin, A tool for mapping between two ontologies us-
ing explicit information, AAAI-02 Workshop on Meaning Negotiation, July 28, 2002, Edmon-
ton, Alberta, Canada.

107

R. Scott Cost, Tim Finin, Anupam Joshi, Yun Peng, Charles Nicholas, Ian Soboroff, Harry Chen,
Lalana Kagal, Filip Perich, Youyong Zou, Sovrin Tolia, ' ITTALKS: A Case Study in the Se-
mantic Web and DAML+OIL', IEEE Intelligent Systems, v17 n1, January/February 2002, pp 40-
47. http://umbc.edu/~finin/papers/ieeeis02/ .

2001

R. Scott Cost, Tim Finin, Anupam Joshi, Yun Peng, Filip Perich, Charles Nicholas, Harry Chen,
Lalana Kagal, Youyong Zou and Sovrin Tolia, ITTALKS: A Case Student in how the Semantic
Web Helps, Proc. First Int. Semantic Web Workshop - Infrastructure and Applications for the
Semantic Web, pp. 477-494, July, 2001, Stanford. http://umbc.edu/~finin/papers/swws01/

Filip Perich, R. Scott Cost, Tim Finin, Anupam Joshi, Yun Peng, Charles Nicholas, Harry Chen,
Lalana Kagal, Youyong Zou and Sovrin Tolia, ITTALKS: An Application of Agents in the Se-
mantic Web, Workshop on Engineering Societies in the Agents' World, 7 July 2001, Prague.
http://umbc.edu/~finin/papers/esaw01/

108

LIST OF ACRONYMS

ACL Agent Communication Language
DAML-S DARPA Agent Markup Language for Services
DL Description Logic
F-LOGIC Frame Logic
F-OWL Frame Logic OWL
FIPA Foundation for Intelligent Physical Agents
FOAF Friend of a Friend
FOL First Order Logic
HTML Hypertext Markup Language
JADE Java Agent Developement Environnent
JESS Java Expert System Shell
KIF Knowledge Interchange Format
KQML Knowledge Query and Manipulation Language
LP Logic Programming
MYSQL MySQL system
NAF Negation as Failure
OIL Ontology Interchange Language
OWL Web Ontology Language
OWL-S Web Ontology Language for Services
RDF Resource Description Framework
RDFS Resource Description Framework for Services
RFP Request for Proposals
RSS Rich Site Summary
RULEML Rule Markup Language
SCLP Situated Courteous Logic Programming
SHIQ a family of abstract description logic languages
SHIQ(D) a family of abstract description logic languages
SQL Structured Query Language
SWD Semantic Web Document
SWO Semantic Web Ontology
TAC Trading Agent Competition
TAGA Trading Agents Game in Agentcities
URI Uniform Resource Identifier
URL Uniform Resource Locater
WML Wireless Markup Language
XHTML Extensible HyperText Markup Language
XML Extensible Markup Language
XSB a logic programming language

109

